← 返回
风电生产商与充电站聚合商在电力市场中的协同参与
Collaborative participation of wind power producer and charging station aggregator in electricity markets
| 作者 | Mohammad Hossein Abbasi · Dillip Kumar Mishra · Ziba Arjmandzadeh · Jiangfeng Zhang · Bin Xuc · Venkat Krovi |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 充电桩 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | WPP and FCS aggregator’s joint participation in electricity markets is solved. |
语言:
中文摘要
摘要 电动汽车(EV)的广泛应用受到两大挑战的制约:快速充电基础设施不足以及对化石燃料发电的依赖。扩建快速充电站(FCS)需要进行最优调度,而这一过程因电动汽车用户行为的随机性而变得复杂。此外,可再生能源出力的剧烈波动通常依赖化石燃料发电来缓解,这可能限制电动汽车在环境方面的优势。本文通过风电生产商(WPP)与FCS聚合商的协调运行来应对上述挑战,旨在优化双方收益的同时考虑电动汽车电池老化及FCS充电能力限制。该问题被建模为一个双层优化问题:WPP和FCS聚合商通过点对点(P2P)电能交易协议关联,各自最大化自身利润。随后将该问题嵌入李雅普诺夫优化框架中,将其分解为单步子问题,从而降低电动汽车充电不确定性的影响。案例研究表明,与聚合商协作使WPP的不平衡电量平均减少45.77%;而P2P电能交易使输送给电动汽车的电力中可再生能源占比平均提高11.17%。此外,本文训练了一个强化学习代理以提升FCS储能系统的利用效率。仿真结果表明,所提出的方法最多可将FCS的日运营成本降低58%,同时最多可使WPP的日利润增加31%。
English Abstract
Abstract The widespread adoption of electric vehicles (EVs) is hindered by two major challenges: limited fast-charging infrastructure and reliance on fossil-fuel-based electricity. Expanding fast-charging stations (FCSs) requires optimal scheduling, which is complicated by the stochastic behavior of EV users. Additionally, rapid fluctuations in renewable power availability, typically mitigated by fossil-fuel generation, can limit EVs’ environmental benefits. This paper addresses these challenges through the coordinated operation of a wind power producer (WPP) and an FCS aggregator, aiming to optimize the revenue of both parties while considering EV battery degradation and FCS charging limits. The problem is formulated as a bi-level optimization problem: the WPP and FCS aggregator maximize their own profits, linked via a peer-to-peer (P2P) energy trading agreement. It is then cast within a Lyapunov optimization framework, decomposing the problem into single-step subproblems, which reduces the impact of EV charging uncertainty. Collaboration with the aggregator decreases WPP’s imbalance by an average of 45.77 % in a case study, while the P2P energy trading increases the renewable share of power delivered to EVs by 11.17 % on average. Furthermore, a reinforcement learning agent is trained to improve FCS energy storage utilization. Simulation results show that the proposed approach can reduce daily FCS operating costs by up to 58 % and increase daily WPP profit by up to 31 %.
S
SunView 深度解读
该风电-充电站协同优化技术对阳光电源ST系列储能变流器及充电桩业务具有重要价值。通过P2P能源交易框架,可提升储能系统在新能源消纳场景的经济性,降低充电站运营成本达58%。建议将Lyapunov优化算法集成至iSolarCloud平台,结合强化学习优化储能调度策略,并在PowerTitan储能系统中验证风储充协同控制,提升新能源充电占比11%以上,增强GFM型储能变流器在微网场景的市场竞争力。