← 返回
融合ConvLSTM网络:使用时空特征增加居民负荷预测范围
Fusion ConvLSTM-Net: Using Spatiotemporal Features to Increase Residential Load Forecast Horizon
| 作者 | Abhishu Oza · Dhaval K. Patel · Bryan J. Ranger |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 户用光伏 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源 居民负荷预测 Fusion ConvLSTM - Net 24小时预测 预测误差率 |
语言:
中文摘要
电力系统正经历向可再生能源技术的重大转型。为充分利用这些能源,优化能源生成、存储和分配可通过未来能源消耗的准确预测增强。预测单个居民负荷在负荷平衡中发挥关键作用,但由于个人消费模式的不规则性质保持挑战。此外当前文献限于仅预测居民负荷到未来几小时。本文提出融合ConvLSTM网络,一种结合空间和时间特征的新型融合编码器-解码器架构,将负荷预测扩展到完整24小时周期。通过以下方式评估模型对比多个基准神经网络模型:1)测试1.5到24小时不同预测窗口大小,2)评估多户模型性能,3)通过聚合100户预测执行大规模预测。此外分析模型预测识别潜在退化。大量实验显示融合ConvLSTM网络不仅将预测窗口扩展到24小时,还相比次优模型降低预测误差率约47%,改善聚合负荷预测准确性并防止模型退化。
English Abstract
Power systems are undergoing a significant transition towards renewable energy technologies. To make the most of these energy sources, optimizing the generation, storage, and distribution of energy can be enhanced with accurate forecasts of future energy consumption. Forecasting the load of individual residents plays a key role in load balancing, but it remains challenging due to the irregular nature of individual consumption patterns. Moreover, the current literature is limited to forecasting residential load to only a few hours in the future. In this paper, we propose Fusion ConvLSTM-Net, a novel fusion encoder-decoder architecture that combines both spatial and temporal features to extend the load forecast to a full 24 hour period. We evaluated the model against several benchmark neural network models by: 1) testing different forecast window sizes ranging from 1.5 to 24 hours, 2) assessing model performance across multiple households, and 3) performing large-scale forecasting by aggregating predictions from 100 households. Additionally, we analyzed the model’s forecasts to identify potential degradation. Our extensive experiments demonstrate that the Fusion ConvLSTM-Net not only extends the forecast window to 24 hours but also reduces the prediction error rate by approximately 47% compared to the next best model, improves the accuracy of aggregate load forecasts, and prevents model degradation.
S
SunView 深度解读
该居民负荷预测技术对阳光电源户用光伏储能系统具有重要应用价值。阳光户用储能系统需要精准的24小时负荷预测来优化光储协同控制策略,该融合ConvLSTM网络可显著提升预测精度和时间范围。阳光可将该技术集成到户用储能EMS系统,实现日前优化调度,提升光伏自发自用比例,降低用户电费,提高系统经济性,增强用户体验和满意度。