← 返回
储能系统技术 储能系统 户用光伏 深度学习 ★ 4.0

输入长度对短期多步电力负荷预测准确性的影响:CNN-LSTM方法

The Effect of Input Length on Prediction Accuracy in Short-Term Multi-Step Electricity Load Forecasting: A CNN-LSTM Approach

作者 Şeyda Özdemır · Yakup Demır · Özal Yildirim
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 户用光伏 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 短期负荷预测 混合深度学习模型 输入长度 预测精度 多步预测
语言:

中文摘要

准确的负荷预测对电力系统管理和规划至关重要。由于电能难以储存,短期电力负荷预测对系统运营商意义重大。本文提出创新混合深度学习模型,结合卷积神经网络CNN和长短期记忆LSTM网络,使用住宅用户实时小时数据进行短期多步负荷预测。模型在12种对称递增输入长度配置下测试,包含天气数据。结果表明增加输入长度可提升所有条件下的学习性能,输入长度大于输出长度可提高预测准确性,MAPE改善67%,RMSE改善70%。增加输入长度的多步预测性能优于单步预测。

English Abstract

Accurate load forecasting is crucial for effective power system management and planning in the context of growing electricity demand triggered by the proliferation of technological devices and rapid digitalization. Since electrical energy is largely non-storable, short-term electrical load forecasting plays a critical role for system operators. This paper presents an innovative hybrid deep learning model that combines convolutional neural networks (CNNs) and long short-term memory (LSTM) networks for short-term multi-step load forecasting using real-time hourly data from a residential customer. The model is tested on 12 different configurations with symmetrically increasing input lengths, including weather data. The results show that increasing the input length improves the learning performance of the model for all conditions. In addition, selecting an input length greater than the output length has been shown to improve prediction accuracy, with an improvement of 67% in Mean Absolute Percentage Error (MAPE) and 70% in Root Mean Square Error (RMSE). Moreover, it was observed that the multi-step forecasting performance with increased input length is more successful than the single-step forecasting performance.
S

SunView 深度解读

该负荷预测技术对阳光电源户用光伏和储能系统的智能能量管理有重要应用价值。阳光户用光储系统需要准确的负荷预测来优化储能充放电策略和光伏自发自用率。CNN-LSTM混合模型可集成到阳光户用逆变器和储能系统控制算法中,结合天气数据和历史负荷实现精准多步预测。该技术可提升阳光户用系统经济性,降低用户电费,提高新能源利用效率。