← 返回
具有半桥多相逆变器拓扑的静态/动态无线充电系统中负载不变的CC与CV模式
Load Invariant CC and CV Modes for Static/Dynamic Wireless Charging System With Half-Bridge Multi-Leg Converter Topology
| 作者 | Aganti Mahesh · Bharatiraja Chokkalingam · Rajesh Verma · Lucian Mihet-Popa |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 谐振感应电能传输 电动汽车充电 动态无线充电系统 LCC - S补偿 恒流恒压输出 |
语言:
中文摘要
谐振感应电能传输(RIPT)是一种先进的无线电力传输(WPT)技术,已成为电动汽车(EV)充电的安全高效解决方案。尽管动态无线充电系统(DWCS)相比静态充电可减小电池容量需求,但其初期投资较高。本文提出一种基于LCC-S补偿的新型方法,利用半桥多相逆变器结构,在两个不同的零相位角(ZPA)频率下实现负载不变的恒流(CC)与恒压(CV)输出。提出了一种迭代较少的优化补偿参数设计方法,确保CC与CV模式均满足SAE J2954频率标准。所设计的系统可根据静态或动态充电应用灵活切换工作模式。实验研制了1 kW的LCC-S补偿DWCS样机,验证了理论分析的正确性。研究为提升RIPT系统的效率与经济性提供了重要参考。
English Abstract
Resonant Inductive Power Transmission (RIPT) is an advanced Wireless Power Transfer (WPT) technology, emerging as a secure and efficient solution for Electric Vehicle (EV) charging. Although Dynamic Wireless Charging Systems (DWCS) reduce the need for large batteries compared to static charging, they require higher initial investments. This study introduces a novel approach utilizing LCC-S compensation to achieve load-invariant Constant Current (CC) and Constant Voltage (CV) outputs at two distinct Zero Phase Angle (ZPA) frequencies in DWCS, leveraging a half-bridge-based multi-legged inverter configuration. The article presents a new method with fewer iterations to determine the optimal compensation parameters, ensuring that both the CC and CV outputs with ZPA comply with the SAE J2954 frequencies standards. The half-bridge-based DWCS with LCC-S compensation is designed to operate in either CC or CV mode, depending on whether the application involves static or dynamic charging. A 1-kW LCC-S compensated DWCS prototype was developed and built to verify and support the theoretical findings and analysis. This study offers valuable insights for optimizing RIPT technology, making EV charging more efficient and cost-effective.
S
SunView 深度解读
该LCC-S补偿无线充电技术对阳光电源新能源汽车产品线具有重要应用价值。半桥多相逆变器拓扑与负载不变CC/CV控制策略可直接应用于充电桩产品升级,实现静态/动态充电模式灵活切换,提升产品竞争力。ZPA频率控制下的软开关特性可借鉴至ST储能变流器,降低开关损耗,提升系统效率。多相逆变器拓扑的模块化设计理念与PowerTitan大型储能系统的扩展性需求高度契合。补偿参数优化方法可为车载OBC充电机的谐振变换器设计提供参考,优化功率密度与EMI性能。该研究为阳光电源布局无线充电领域提供了技术储备。