← 返回
储能系统技术 储能系统 宽禁带半导体 GaN器件 ★ 5.0

高K介质包裹GaN环栅场效应管在IoT系统中的高频器件设计与分析

Design and Analysis of High-K Wrapped GaN GAA FET as High-Frequency Device in IOT Systems

作者 Sneha Singh · Rudra Sankar Dhar · Amit Banerjee · Vinay Gupta
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 宽禁带半导体 GaN器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 氮化镓基环绕栅场效应晶体管 性能评估 高k介质间隔层 源漏非交叠工程 低功耗高速应用
语言:

中文摘要

基于氮化镓GaN的栅堆叠GS环绕栅场效应管GAA FET因其卓越材料特性如高电子迁移率、宽禁带和优越热稳定性,成为下一代节能电子设备有前途候选。本研究聚焦GaN基GAA FET的直流和交流性能评估,结合高k介电间隔层和源漏欠覆盖工程。直流分析参数如亚阈值斜率、阈值电压、漏电流、泄漏电流和电流比。相比所提2nm技术节点IRDS2025,关态泄漏电流降低约95%、开关比提升约606%。此外,亚阈值摆幅优化约65mV/decade,表明卓越泄漏控制和开关性能。交流分析评估关键品质因数包括跨导、截止频率和寄生电容。观察到高k间隔层显著增强静电控制,降低短沟道效应SCE并改善器件稳定性。优化欠覆盖最小化寄生电容,导致截止频率提升约103%、跨导改善约163%,丰富高频性能。这些发现强调带高k间隔层和欠覆盖设计的GaN基GAA FET在低功耗高速应用特别是IoT系统和5G技术的绿色可持续电子设备中的潜力。

English Abstract

Gallium Nitride (GaN)-based Gate Stack (GS) Gate-All-Around Field Effect Transistors (GAA FETs) are promising candidates for next-generation energy-efficient electronics due to their exceptional material properties, such as high electron mobility, wide bandgap, and superior thermal stability. This study focuses on the performance evaluation of GaN-based GAA FETs for both DC and AC explorations incorporating high-k dielectric spacers and source/drain underlap engineering. The DC analyses parameters such as subthreshold slope, threshold voltage, drain current, leakage current and current ratio. ~95% reduction in off-state leakage current and ~606% increase in switching ratio is acquired in comparison to proposed 2nm technology node IRDS2025. Additionally, the subthreshold swing is optimized around ~65mV/decade indicating superior leakage control and switching performance. AC analysis evaluates key figures of merits, including transconductance, cut-off frequency, and parasitic capacitances. It is observed that the high-k spacer significantly enhances electrostatic control reducing short-channel effects (SCEs) and improving device stability. The optimized underlap minimizes parasitic capacitance, leading to ~103% increase in cut-off frequency and ~163% improvement in transconductance, resulting in enriched high-frequency performance. These findings underscore the potential of GaN-based GAA FETs with high-k spacer and underlap designs for low-power, high-speed applications in green and sustainable electronics, particularly for IoT systems and 5G technologies. The integration of gate underlap with high-k dielectric spacer region effectively reduces SCEs and parasitic resistances. By controlling the electric field distribution and improving electrostatics integrity this design achieves augmented switching speed while suppresses leakage significantly, making the device a strong candidate for next-generation digital and RF applications.
S

SunView 深度解读

该GaN器件技术对阳光电源功率半导体研发具有重要参考价值。阳光在储能变流器和光伏逆变器中应用GaN器件追求更高开关频率和更低损耗。该研究的高k介质间隔层和欠覆盖设计可启发阳光GaN功率器件优化,降低寄生电容,提升开关速度103%。在高频应用中,该器件的低亚阈值摆幅(65mV/decade)和高开关比(606%提升)可显著降低阳光储能系统的开关损耗。该GaN GAA FET的宽禁带和热稳定性优势可提升阳光功率器件的温度适应性和可靠性。结合阳光三电平拓扑和软开关技术,该高频GaN器件可实现更高功率密度和效率,支持储能变流器小型化和性能提升。