← 返回
光伏发电技术 储能系统 MPPT 深度学习 ★ 5.0

基于改进型人工神经网络的光伏系统最大功率点跟踪:融合元启发式与解析算法以实现部分遮阴下的最优性能

Enhanced ANN-Based MPPT for Photovoltaic Systems: Integrating Metaheuristic and Analytical Algorithms for Optimal Performance Under Partial Shading

作者 Alpaslan Demirci · Idriss Dagal · Said Mirza Tercan · Hasan Gundogdu · Musa Terkes · Umit Cali
期刊 IEEE Access
出版日期 2025年1月
技术分类 光伏发电技术
技术标签 储能系统 MPPT 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏系统 部分阴影条件 最大功率点跟踪 人工神经网络 能源产量优化
语言:

中文摘要

在部分遮阴条件下,光伏系统效率显著下降,导致最大功率点跟踪困难。本文提出一种改进型人工神经网络(ANN)方法,通过结合解析算法与元启发式优化算法进行训练,提升MPPT性能。模型基于涵盖多种遮阴、辐照及温度条件的大量数据集构建,仿真结果表明,该方法在动态遮阴环境下具有更高精度、更快响应速度和更强稳定性,MPPT效率在晴空和遮阴条件下分别达99.98%和99.97%,优于传统P&O及GWO、HHO、PSO等优化算法。

English Abstract

The efficiency of photovoltaic (PV) systems significantly decreases under partial shading conditions (PSC), leading to challenges in accurately tracking the maximum power point (MPP). This paper presents an enhanced Artificial Neural Network (ANN) to improve the performance of MPP tracking (MPPT) in PV systems subject to PSC. The proposed algorithm is based on an advanced ANN model trained with widely known analytical and metaheuristic algorithms, providing higher accuracy and faster convergence than existing methods. Furthermore, the ANN model was developed and trained using an extensive dataset that includes diverse shading scenarios, irradiation levels, and temperature conditions, with metaheuristic algorithms playing a key role in enhancing its training process. The performance of the proposed system has been evaluated through extensive simulations and sensitivity analyses. The results demonstrate that the improved ANN-based MPPT algorithm consistently outperforms existing MPPT techniques, including the Perturb and Observe (P&O) and Grey Wolf Optimization (GWO), Harris Hawks Optimization (HHO), and Particle Swarm Optimization (PSO) methods. The proposed approach achieves higher efficiency, faster response times, and improved stability under dynamic shading conditions. Specifically, its superior efficiency reaches up to 99.98% under clear sky conditions (CSC) and up to 99.97% under PSC, as verified through extensive simulations using MPPT efficiency metrics. This advancement holds significant potential for optimizing the energy yield of PV systems, promoting more reliable and efficient renewable energy solutions, especially when operating in challenging environmental conditions.
S

SunView 深度解读

该改进型ANN-MPPT技术对阳光电源SG系列光伏逆变器具有重要应用价值。当前SG系列产品采用传统P&O或PSO算法,在复杂遮阴场景下存在局部最优陷阱和响应速度瓶颈。该研究通过元启发式算法训练ANN模型,在动态遮阴下实现99.97%的MPPT效率,可直接集成至SG逆变器的DSP控制器中,提升分布式光伏电站在建筑物、树木遮挡等实际工况下的发电效率。同时,该技术可扩展至PowerTitan储能系统的光储协同控制,通过精准功率预测优化充放电策略。建议结合iSolarCloud平台积累的海量遮阴数据进行模型本地化训练,形成具有阳光特色的智能MPPT算法库,强化产品在复杂环境下的竞争优势。