← 返回
应用增强型自适应虚拟惯量控制实现电动汽车集成可再生能源微电网系统的高效频率控制
Application of Enhanced Self-Adaptive Virtual Inertia Control for Efficient Frequency Control of Renewable Energy-Based Microgrid System Integrated With Electric Vehicles
| 作者 | Sonalika Mishra · Preeti Ranjan Sahu · Ramesh Chandra Prusty · Sidhartha Panda · Taha Selim Ustun · Ahmet Onen |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 微电网 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 孤岛微电网 频率控制 自适应增强虚拟惯性控制器 电动汽车 可再生能源 |
语言:
中文摘要
由于高比例可再生能源渗透导致系统惯量缺乏,孤岛微电网MG频率控制是挑战性任务。本研究提出基于模糊的自适应增强虚拟惯量控制器SAEVIC与电动汽车EV协同,克服频率控制问题。控制器旨在稳定系统频率和平衡接入EV的荷电状态SOC。通过与传统虚拟惯量控制、传统增强虚拟惯量控制和自适应虚拟惯量控制对比验证所提控制器性能。测试EV集成对系统频率动态的影响。在注入随机扰动、高低水平可再生能源、可再生能源拒绝服务攻击和内部参数变化的扰动运行条件下验证。与传统增强VI方法相比,SAEVIC方法在风光和多步负荷扰动下超调降低11.40%,下冲降低46.46%,稳定时间降低98.6%,适应度值降低10.27%。
English Abstract
The frequency control of an islanded microgrid (MG) is a challenging task due to the lack of system inertia as it is highly penetrated with renewable energy sources (RESs). Current work suggests overcoming this issue with an energy storage system (ESS)-based virtual inertia (VI) approach by providing appropriate proportional damping instead of a fixed value. In this study to overcome the frequency control issue, a fuzzy-based self-adaptive enhanced VI controller (SAEVIC) coordinated with electric vehicles (EV) is proposed. The controller is proposed to stabilize the system frequency and balance state of charge (SOC) of plugged-in electric vehicles (EVs). The performance of the proposed controller is justified in terms of frequency control over with/without conventional VI control, conventional enhanced VI control, and self-adaptive VI control. The system frequency and SOC signal are considered for the control action of the proposed controller. The impact of EV integration on the system frequency dynamics is tested. The validation of the proposed controller is carried out with a system injected with stochastic disturbances, high and low levels of renewable energies, denial of service attacks on renewable energy, and disturbed operating conditions with varied internal parameters. It is noticed that with the SAEVIC approach, the overshoot (OS)-11.40%, undershoot (US)- 46.46%, settling time (ST)-98.6% and fitness value-10.27% are decreased as compared to conventional enhanced VI approach under Stochastic variations of wind, PV, and multi-step load disturbance of MG system.
S
SunView 深度解读
该虚拟惯量控制技术与阳光电源构网型储能系统高度契合。阳光PowerTitan2.0储能系统支持构网型GFM控制,可为高比例新能源微电网提供虚拟惯量。自适应增强虚拟惯量控制器SAEVIC的模糊自适应思路可应用于阳光储能系统惯量自适应功能开发。EV协同频率控制与阳光V2G技术发展方向一致。该研究验证的显著性能改善,证明阳光构网型储能在微电网频率稳定中的核心价值,可支撑阳光拓展微电网和工商业储能市场。