← 返回
双面光伏系统发电量估算中物理模型的比较
Comparison of physical models for bifacial PV power estimation
| 作者 | Ali Sohani · Marco Pierro · David Moser · Cristina Cornaro |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 327 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel power estimation model is proposed by defining Dynamic Bifacial [Power Gain](https://www.sciencedirect.com/topics/engineering/power-gain "Learn more about Power Gain from ScienceDirect's AI-generated Topic Pages") (DBPG). |
语言:
中文摘要
摘要 全球范围内,双面光伏(BFPV)系统的应用正呈现出不断增长的趋势,并且预计它们将很快占据市场的最大份额。对于BFPV系统而言,准确估算其主要输出——发电功率,具有重要作用,因为交易商/预测服务提供商以及运维公司迫切需要通过功率估算来检测实际输出与预期之间的偏差。通常在工业实践中,即使是在最佳情况下,也仅通过计算一个有效辐照度作为单一输入参数,将正面倾斜总辐照度(GTI)和背面倾斜辐照度(RTI)合并处理。基于这一点,本文提出了一种数据驱动模型,用于获取一个称为动态双面功率增益(DBPG)的参数。将DBPG加入单面光伏(MFPV)系统的发电输出中,即可确定BFPV系统的总发电量。因此,本文提出的新型数据驱动模型(称为DBPG模型)能够单独估算组件背面的发电量,从而有助于更深入地分析和诊断BFPV系统运行状态。本研究以位于意大利博尔扎诺欧拉克研究中心(Eurac Research)的一座采用水平单轴跟踪(HSAT)方式的BFPV电站为案例,分别针对黑色和白色地面条件开展了模型构建工作。结果表明,相较于采用有效辐照度方法的PVlib工具,DBPG模型具有显著更高的精度。使用PVlib进行功率估算时,在黑色和白色地面条件下归一化均方根误差(NRMSE)分别为2.99%和4.59%,而采用DBPG模型后,该误差分别降低至1.14%和2.02%。此外,在排除近阴影条件影响的情况下,利用PVlib对黑色地面近三个月、白色地面近十七个月期间的总发电量进行估算时,分别产生3.26%和8.25%的误差;而DBPG模型对应的误差则显著更低,分别为0.58%和1.98%。
English Abstract
Abstract There is a growing tendency towards the application of bifacial photovoltaic (BFPV) systems all around the world, and it is predicted that they will soon take the largest share of the market. For a BFPV system, accurate estimation of power, as the main output, plays an important role as it is a critical need for trader/forecast providers and operations and maintenance companies to detect deviations from expected output. Typically, in the industry practice in the best case scenario, an effective irradiance is calculated, which combines both the global (front) tilted irradiance (GTI) and the rear tilted irradiance (RTI) into a single input parameter. Considering this point, a data-driven model has been developed here to obtain a parameter called dynamic bifacial power gain (DBPG). Adding DBPG to monofacial photovoltaic (MFPV) power output results in determination of BFPV power production. Therefore, the novel proposed data driven model (called DBPG model) is able to estimate the rear side production separately, which helps to analyze and diagnose a BFPV system better. A BFPV plant with horizontal single-axis tracking (HSAT) in Eurac Research, Bolzano, Italy, is considered as the case-study and model development is done for both black and white ground conditions. The results have confirmed much higher accuracy of the DBPG model compared to PVlib, as a tool that uses the effective irradiance. Normalized root mean square error (NRMSE) values of power estimation by PVlib are 2.99% and 4.59% for black and white ground conditions, while these are reduced to 1.14% and 2.02%, respectively, by taking advantage of the DBPG model. Moreover, excluding the near shadows conditions from the computation, using PVlib leads to 3.26% and 8.25% error in total yield estimation for ground with black over a period of almost 3 months and white surfaces over a period of almost 17 months. The corresponding values for DBPG model are much lower, i.e., 0.58% and 1.98%.
S
SunView 深度解读
该双面组件功率预测研究对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要价值。DBPG动态增益模型可将背面发电单独建模,误差降至1-2%,远优于传统等效辐照度法。建议将该模型集成至iSolarCloud智能运维平台,实现双面组件发电量精准预测与异常诊断;结合MPPT优化算法,可针对不同地表反射率动态调整跟踪策略;为1500V大型地面电站的发电量评估和性能分析提供更精确的理论支撑,提升系统全生命周期收益预测准确性。