← 返回
储能系统技术 储能系统 SiC器件 GaN器件 ★ 5.0

级联GaN HEMT短路失效的物理机理研究

Physical Understanding on Short-Circuit Failure for Cascode GaN HEMTs

语言:

中文摘要

短路耐受能力是开关电源中功率器件的重要指标。针对硅基和碳化硅MOSFET已有广泛研究,但对由硅MOSFET与耗尽型GaN HEMT(DHEMT)构成的级联GaN高电子迁移率晶体管,其短路失效机制尚不明确。本文通过实验与数值模拟相结合的方法,分别提取两种器件的电学特性,揭示级联结构在短路过程中的电热失效机制。结果表明,DHEMT承受的电热应力远高于硅MOSFET,更易发生热失效。进一步的热-力耦合仿真显示,异质结层间热膨胀系数差异引发的机械应力是导致DHEMT失效的根源。此外,分析了栅极控制机制对短路能力的限制,并提出了短路鲁棒性与导通电阻之间的折衷设计指导。

English Abstract

Short-circuit (SC) robustness is an important concern for power devices in switching mode power supplies. For individual transistors such as Si and SiC MOSFETs, the SC capability has been widely reported. However, for the cascode gallium nitride high electron mobility transistor (GaN HEMT), which consists of a Si MOSFET and a depletion-mode GaN HEMT (DHEMT), the inside mechanisms of SC have not been fully investigated yet. In this article, by setting two individual devices, both experiments and numerical simulations are performed to reveal the electrothermal failure mechanisms of cascode GaN HEMTs during SC operation. The electrical characteristics for the Si MOSFET and the DHEMT are separately extracted. It is confirmed that the DHEMT withstands a much higher electrothermal stress than the Si MOSFET during SC operation. Thermal failures tend to occur in the DHEMT. Furthermore, thermal and mechanical simulations are deployed to analyze the failure mechanism within DHEMT structure. The thermal-induced mechanical stress due to different thermal expansion rates of heterojunction layers is the source of failure. Finally, an analysis is conducted on the unique gate control mechanism that limits the SC capability of the cascode configuration. A design guidance is proposed for trade-off relationship between SC robustness and device on-resistance in cascode GaN HEMT.
S

SunView 深度解读

该级联GaN HEMT短路失效机理研究对阳光电源功率器件应用具有重要指导价值。研究揭示的DHEMT热应力集中和异质结热膨胀失配机制,可直接应用于ST系列储能变流器和SG光伏逆变器的GaN器件选型与保护设计。针对短路鲁棒性与导通电阻的折衷设计指导,有助于优化PowerTitan大型储能系统的功率模块热管理方案,在提升系统效率的同时增强短路保护能力。栅极控制机制分析可改进车载OBC和充电桩的驱动电路设计,通过优化栅极驱动参数提升GaN器件短路耐受时间,增强产品可靠性,降低系统故障率。