← 返回
通过将MgO-SiC纳米材料与有机聚合物复合以增强其形貌、结构、光学和介电特性用于高性能储能器件
Boosting the morphological, structural, optical, and dielectric characteristics of MgO-SiC nanomaterials merged with organic polymer for high-performance energy storage devices
| 作者 | Majeed Ali Habeeb |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 聚合物纳米复合材料 氧化镁 碳化硅 介电性能 热稳定性 |
语言:
中文摘要
本研究的目的是通过将氧化镁(MgO)/碳化硅(SiC)纳米材料(NMs)与聚甲基丙烯酸甲酯(PMMA)复合,制备聚合物纳米复合材料(PNCs),以应用于多种电学和光学纳米器件。采用浇铸法制备了PMMA/MgO-SiC PNCs薄膜。利用光学显微镜(OM)和傅里叶变换红外光谱(FTIR)对PMMA/MgO-SiC聚合物纳米复合材料(PNCs)的结构特性进行了研究。此外,还考察了PMMA/MgO-SiC PNCs的光学性能。光学显微镜(OM)结果显示,MgO-SiC纳米材料(NMs)在PMMA聚合物基体中实现了均匀分散。同时,傅里叶变换红外光谱(FTIR)分析证实了PMMA聚合物与MgO-SiC NMs之间存在物理相互作用。在整个波长范围约为(200–780)nm的光谱范围内评估了样品的光谱特性。结果表明,当MgO-SiC NMs的含量为5 wt.%时,在380 nm(紫外光谱区)和560 nm(可见光谱区)处,PMMA的吸收值分别增加了1200%和1800%;而在相同波长下,PMMA的光学透过率则分别下降了113%和118%。这些结果表明,PMMA/MgO-SiC PNCs薄膜在微型电子器件和光学器件中具有潜在应用价值。分析还揭示出存在两种不同类型的光学带隙:间接禁戒能隙和间接允许能隙。随着MgO-SiC NMs总含量增加至5 wt.%,间接禁戒能隙从4.63 eV降低到2.95 eV,而间接允许能隙则从5.12 eV降低到3.96 eV。这两种带隙类型之间的差异突出了PMMA/MgO-SiC PNCs在特定光学应用中的可调谐性。随着MgO-SiC NMs浓度的增加,PMMA的光学性能得到增强。介电性能分析表明,PMMA/MgO-SiC PNCs的介电常数和介电损耗随频率升高而减小,但随MgO-SiC NMs比例的增加而增大。PMMA/MgO-SiC(PNCs)的电导率随着频率以及MgO-SiC纳米颗粒(NMs)含量的增加而升高。研究还探讨了PMMA/MgO-SiC(PNCs)在压力传感器中的潜在应用。结果表明,随着压力的增加,PMMA/MgO-SiC PNCs的介电性能也随之提高。综上所述,关于结构、形貌和介电特性的研究结果证实,PMMA/MgO-SiC PNCs在诸如压力传感器等多种应用中可能具有显著优势。
English Abstract
The objective of the current investigation is to create polymer nanocomposites (PNCs) by combining magnesium oxide (MgO)/ silicon carbide (SiC) nanomaterials (NMs) and Poly(methyl methacrylate) (PMMA) for use in a diverse range of electrical and optical nanodevices. The films of PMMA/MgO-SiC PNCs were produced using the casting process. The structural properties of PMMA/MgO-SiC polymer nanocomposites (PNCs) were investigated using optical microscopy (OM) and Fourier-transform infrared spectroscopy (FTIR). In addition, the optical properties of PMMA/MgO-SiC PNCs were also examined. The Optical Microscope (OM) has shown that there is a uniform dispersion of MgO-SiC Nanomaterials (NMs) within the polymer structure of PMMA. Also, the Fourier Transform Infrared Spectroscopy (FTIR) analysis confirms the presence of a physical contact with the PMMA polymer and the MgO-SiC NMs. The spectral properties were evaluated throughout a spectrum of wavelengths spanning around (200–780) nm. The outcomes indicated that the absorption value of PMMA rose by 1200% and 1800% at wavelengths (380 nm) (UV/spectra) and 560 nm (VIS/spectra), respectively, when the ratio of MgO-SiC NMs was 5 wt.%. The optical transmission of PMMA fell by 113% and 118% at wavelengths of 380 nm and 560 nm, respectively. These findings suggest that PMMA/MgO-SiC PNCs films have potential uses in tiny electronic devices and optics. The analysis revealed the existence of two distinct types of optical band gaps: an indirect forbidden energy gap and an indirect allowed energy gap. The indirect forbidden energy gap decreased from 4.63 to 2.95 eV, while the indirect allowed energy gap decreased from 5.12 to 3.96 eV, as the total amount of MgO-SiC NMs increased to 5 wt.%. This distinction between the two band gap types emphasizes the tunability of the PMMA/MgO-SiC PNCs for specific optical applications. The optical properties of PMMA were enhanced when the concentration of MgO-SiC NMs increased. The analysis of dielectric properties revealed that the dielectric constant and loss of PMMA/MgO-SiC PNCs decreased as the frequency increased, but increased as the ratio of MgO-SiC NMs was enhanced. The electrical conductivity of PMMA/MgO-SiC (PNCs) increases as the frequency and ratio of MgO-SiC nanoparticles (NMs) increase. The PMMA/MgO-SiC (PNCs) were investigated for their potential use in pressure sensors. The results indicated that when the pressure rose, the dielectric properties of the PMMA/MgO-SiC PNCs also increased. In conclusion, the results regarding the structural, morphological, and dielectric characteristics have provided confirmation that the PMMA/MgO-SiC PNCs might potentially be advantageous in many applications such as sensors of pressure.
S
SunView 深度解读
该MgO-SiC/PMMA纳米复合材料研究对阳光电源储能系统具有重要参考价值。材料展现的可调带隙(2.95-4.63eV)、增强介电特性及压力传感能力,可应用于ST系列PCS的电容器介质优化和PowerTitan储能系统的压力监测传感器开发。其优异的介电常数频率特性与SiC功率器件的高频开关特性匹配,有助于提升三电平拓扑中的绝缘性能。该复合材料技术可为储能系统的智能传感、热管理及电气绝缘提供新型材料解决方案,支撑iSolarCloud平台的预测性维护功能升级。