← 返回
基于温度相关集总热模型的SiC功率模块高效结温估计
Efficient Junction Temperature Estimation of SiC Power Modules Based on Temperature-Dependent Lumped Thermal Model
| 作者 | Yizheng Tang · Cao Zhan · Lingyu Zhu · Weicheng Wang · Yating Gou · Shengchang Ji |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2024年9月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | SiC器件 功率模块 有限元仿真 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 碳化硅功率模块 结温估计 三维集总热模型 自适应粒子群优化算法 梯形规则 - 向后差分法 |
语言:
中文摘要
碳化硅(SiC)功率模块在高温下性能优于传统硅器件,其热特性受材料温度依赖性显著影响。基于电热耦合的结温估算因迭代中频繁更新温度相关参数而效率低下。本文提出一种高效的多芯片SiC功率模块结温估算方法,构建了包含温度相关参数的非线性状态空间方程的三维集总热模型(LTM)。利用有限元仿真获得的动态热响应曲线,结合自适应粒子群优化(APSO)算法精确辨识非线性热参数。采用梯形规则-二阶后向微分(TR-BDF2)法分两阶段求解,兼顾稳定性与计算效率,计算速度较传统龙格-库塔法提升1948倍,误差控制在约1°C以内,实验验证了该方法在高温下结温估算的高效性与准确性。
English Abstract
Silicon carbide (SiC) power modules exhibit superior performance at high temperatures compared to silicon counterparts, and their thermal performance at such high temperature is significantly influenced by the properties of temperature-dependent materials. A junction temperature estimation based on the electrothermal coupling effect becomes significantly inefficient due to step-by-step updates of the temperature-dependent thermal parameters in iteration calculation. Thus, this article proposes an efficient estimation approach to estimate the junction temperature of multichip SiC power modules. A 3-D lumped thermal model (LTM) is developed, incorporating temperature-dependent thermal parameters in its nonlinear state-space equations. Dynamic thermal curves from finite element (FE) simulation are utilized to accurately identify these nonlinear thermal parameters via an adaptive particle swarm optimization (APSO) algorithm. In particular, the nonlinear state-space equations are effectively solved by the trapezoidal rule-backward differentiation formula 2 (TR-BDF2) method, which implements calculations in two stages between the trapezoidal rule (TR) and backward differentiation formula (BDF2), leading to enhanced stability and a significant reduction in computation time. The proposed method achieves a computational speed of 1948 times faster than the conventional Runge-Kutta (R-K) method. The computational errors are within approximately 1~^ C, experimentally confirming that the proposed approach is superior in the efficient and accurate estimation of junction temperature at high temperatures.
S
SunView 深度解读
该SiC功率模块高效结温估算技术对阳光电源多条产品线具有重要应用价值。在ST系列储能变流器和SG系列光伏逆变器中,SiC器件已广泛应用于提升功率密度和效率,精准的结温估算可优化热管理设计,提升系统可靠性。TR-BDF2算法相比传统方法计算速度提升近2000倍,可集成至iSolarCloud智能运维平台实现实时热监测和预测性维护。在电动汽车OBC和充电桩产品中,该方法能有效应对SiC器件高温工况下的温度相关性非线性特性,通过APSO算法精确辨识热参数,为功率模块设计提供高效仿真工具,缩短研发周期,支撑阳光电源在高功率密度产品的技术领先地位。