← 返回
电动汽车驱动 SiC器件 多物理场耦合 ★ 5.0

非厄米光子学:客座编辑语

Non-Hermitian photonics: Guest editorial

作者 Liang Feng · Li Ge · Henning Schomerus · United Kingdom
期刊 Applied Physics Letters
出版日期 2025年1月
卷/期 第 126 卷 第 3 期
技术分类 电动汽车驱动
技术标签 SiC器件 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光子系统 非厄米光子学 对称性 拓扑 光操控
语言:

中文摘要

光子系统因其在调控光的传播、耦合与约束方面的高度灵活性,成为实现基于对称性和拓扑性增强功能器件的理想平台。通过光学增益、损耗及非互易耦合调控光子本征态,为构建非厄米哈密顿量提供了有力工具,推动了超越传统凝聚态体系的对称性研究,催生了非厄米光子学。近十年来的快速发展使其在经典与量子领域均实现了复杂的光学响应与独特的光-物质相互作用。尽管与电子量子系统有相似之处,非厄米光子学植根于电磁学基本原理,并遵循玻色统计。

English Abstract

Based on their expansive flexibility of controlling the propagation, coupling, and confinement of light, photonic systems are a prime physical platform to realize the full potential of devices whose functionality is enhanced by symmetry and topology. Most notably, the capability to manipulate photonic eigenstates through optical gain and loss and non-reciprocal couplings provides a powerful toolbox for tailoring non-Hermitian Hamiltonians1,2 to study symmetry paradigms that go beyond conventional condensed matter systems—marking the birth of non-Hermitian photonics.3 Rapid developments of these concepts over the past decade have already empowered us to achieve complex optical responses and unique light–matter interactions in both classical and quantum domains. Despite the similarities shared with electron-based quantum systems, non-Hermitian photonics is rooted in the fundamentals of electromagnetics and governed by bosonic statistics. The direct inclusion of optical non-Hermiticity in
S

SunView 深度解读

该非厄米光子学研究虽聚焦基础光学理论,但其对光传播调控、损耗管理及非互易耦合的创新思路,可为阳光电源功率器件的多物理场耦合设计提供启发。在SiC器件应用中,非厄米系统对能量耗散与传输路径的精准调控理念,可借鉴于ST储能变流器的热管理优化和电磁兼容设计,通过非对称耦合抑制寄生振荡。对于SG光伏逆变器的MPPT算法,该研究中光子本征态调控思想可启发复杂工况下的能量流动建模。此外,其拓扑增强功能器件理念与三电平拓扑的鲁棒性提升存在方法论共性,为新能源汽车驱动系统的电磁-热-机械多场耦合仿真提供跨学科参考。