← 返回
基于矩阵自适应校正的动态降维方法用于高风电渗透率下大规模电力系统电压相关暂态安全约束最优潮流
Matrix Adaptive Correction-Based Dynamic Dimensionality Reduction Method for Voltage-Related TSCOPF in Bulk Power Systems With High Wind Power Penetration
| 作者 | Lin Xue · Tao Niu · Nan Feng · Sidun Fang · Yuyao Feng · Hung Dinh Nguyen |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年2月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 暂态安全约束最优潮流 动态降维矩阵自适应校正算法 降维处理 降阶模型分解 计算效率 |
语言:
中文摘要
暂态安全约束最优潮流(TSCOPF)是电力系统运行中的关键问题,但在大规模电网中面临模型阶数高、电压动态复杂等挑战。本文提出动态降维矩阵自适应校正(DDR-MAC)算法,通过在节点与设备层面进行降维处理,提取主导模式并建立降维误差评估模型,确保精度。将原问题分解为混合整数线性优化模型与系数校正模型,并引入割线/切线灵敏度自适应校正方法以加速计算。在多规模IEEE及Nordic测试系统上的验证表明,该方法较传统方法计算效率提升49.07%,且精度更高。
English Abstract
Transient security-constrained optimal power flow (TSCOPF) is an important class of problems for system operation. Several challenges arise when dealing with bulk power grids, including the large size and complex transient voltage behaviors. This paper aims to address such hurdles by proposing a dynamic dimensionality reduction matrix adaptive correction (DDR-MAC) algorithm, which can effectively evaluate proper Volt/Var levels to guarantee secure system operation. First, this paper performs dimensionality reduction processing at the bus and device levels to obtain a low-dimensional model with dominant modes, which solves the problems of high-order and large computational volumes of differential equations. Moreover, a dimensionality reduction error assessment model is established to ensure reduced-order accuracy. Then, the reduced-order TSCOPF model is equivalently decomposed into a mixed-integer linear optimization model and a combined coefficient correction model for system dynamic constraints and steady-state nonlinear constraints. Furthermore, a secant/tangent sensitivity adaptive correction method is presented to achieve fast computation. The DDR-MAC approach is verified across differently scaled IEEE test systems and the Nordic test system and can improve computational efficiency by 49.07% while offering higher accuracy than traditional computation methods.
S
SunView 深度解读
该动态降维算法对阳光电源的储能与风电产品线具有重要应用价值。特别适用于ST系列储能变流器和大型储能系统的电压稳定控制,可提升系统在高风电渗透率场景下的运行效率。通过矩阵自适应校正方法,能够优化PowerTitan储能系统的电压暂态响应特性,提高GFM/GFL控制的动态性能。该技术可集成到iSolarCloud平台,用于大规模新能源电站的电压稳定性评估与优化调度。对阳光电源开发更高效的储能控制算法、完善电压暂态安全约束具有重要的技术启发。