← 返回
风电变流技术 储能系统 SiC器件 ★ 5.0

基于分层特征依赖Transformer的波动性海洋环境下短期海上风电功率预测

Short-Term Offshore Wind Power Forecasting in Volatile Marine Environments Based on a Hierarchical Feature-Dependency Transformer

作者 Tianshuai Pei · Keqi Chen · Lina Yang · Xinzhang Wu · Yunxuan Dong
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年9月
技术分类 风电变流技术
技术标签 储能系统 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 海上风电 短期预测 Hieroformer 动态特征依赖层次 预测精度
语言:

中文摘要

在波动性强的海洋环境中,突发风暴、潮汐变化和剧烈波浪导致时空异质性,严重影响短期海上风电功率预测精度,威胁电网稳定并增加经济成本。现有方法多依赖静态相关性,难以捕捉复杂非线性特征交互。为此,本文提出Hieroformer,一种基于Transformer的新框架,通过动态特征依赖层次结构建模环境演化依赖关系;设计层次感知注意力机制,引入物理归纳偏置以克服传统注意力排列不变性的局限;结合频域滤波器分离有效周期信号与噪声;并在IEEE 118节点系统中验证其显著降低运行成本。实验表明,该模型在真实数据上关键指标平均提升10%,且在极端天气下仍保持高精度。

English Abstract

Accurate short-term forecasting for offshore wind power is undermined by volatile marine environments, where sudden storms, shifting tides, and intense waves create dynamic spatiotemporal heterogeneity. This volatility threatens grid stability and incurs economic costs due to inefficient reserve allocation. Existing forecasting methods often rely on static correlations and struggle to model the complex, non-linear feature interactions under such conditions. To address this gap, we propose Hieroformer, a novel Transformer-based framework with four key contributions. First, we propose a dynamic feature-dependency hierarchy, built upon directed information flow rather than static correlation, to model the evolving dependencies within volatile marine environments. Second, we propose a hierarchy-aware attention mechanism that instills a physical inductive bias into the Transformer architecture, which overcomes a key limitation of standard, permutation-invariant attention in time series analysis. Third, we introduce a novel frequency-domain filter to refine the input signal, which separates valuable forecasting periodicities from non-informative noise and static components. Finally, we demonstrate through a case study on the IEEE 118-bus system that the model's enhanced forecasting accuracy translates directly into operational cost savings. Experiments on real-world offshore datasets confirm that Hieroformer outperforms state-of-the-art models by an average of 10% in key metrics and maintains high accuracy even during extreme weather events.
S

SunView 深度解读

该研究的分层特征依赖Transformer模型对阳光电源的储能和风电产品线具有重要应用价值。特别是对ST系列储能变流器和风电变流器的功率预测与调度优化方面,可通过其层次感知注意力机制提升极端天气下的预测精度。该技术可优化iSolarCloud平台的智能运维算法,提高储能调度和风电并网的经济性。具体应用包括:(1)改进PowerTitan大型储能系统的调度策略;(2)优化风电场功率预测模型;(3)提升GFM/GFL控制的动态响应性能。建议将该算法集成到现有预测平台,可显著提高系统运行效率,降低调度成本。