找到 1 条结果

排序:
风电变流技术 储能系统 SiC器件 ★ 5.0

基于分层特征依赖Transformer的波动性海洋环境下短期海上风电功率预测

Short-Term Offshore Wind Power Forecasting in Volatile Marine Environments Based on a Hierarchical Feature-Dependency Transformer

Tianshuai Pei · Keqi Chen · Lina Yang · Xinzhang Wu 等5人 · IEEE Transactions on Sustainable Energy · 2025年9月

在波动性强的海洋环境中,突发风暴、潮汐变化和剧烈波浪导致时空异质性,严重影响短期海上风电功率预测精度,威胁电网稳定并增加经济成本。现有方法多依赖静态相关性,难以捕捉复杂非线性特征交互。为此,本文提出Hieroformer,一种基于Transformer的新框架,通过动态特征依赖层次结构建模环境演化依赖关系;设计层次感知注意力机制,引入物理归纳偏置以克服传统注意力排列不变性的局限;结合频域滤波器分离有效周期信号与噪声;并在IEEE 118节点系统中验证其显著降低运行成本。实验表明,该模型在真实数据...

解读: 该研究的分层特征依赖Transformer模型对阳光电源的储能和风电产品线具有重要应用价值。特别是对ST系列储能变流器和风电变流器的功率预测与调度优化方面,可通过其层次感知注意力机制提升极端天气下的预测精度。该技术可优化iSolarCloud平台的智能运维算法,提高储能调度和风电并网的经济性。具体应...