← 返回
风电变流技术 储能系统 模型预测控制MPC ★ 5.0

考虑气动相互作用的双阶段MPC风电场自动发电控制

Dual-Stage MPC-Based AGC for Wind Farm Considering Aerodynamic Interactions

作者 Zishuo Huang · Wenchuan Wu
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年11月
技术分类 风电变流技术
技术标签 储能系统 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风电场 自动发电控制 风速预测模型 双阶段模型预测控制 功率跟踪
语言:

中文摘要

风电场被鼓励提供自动发电控制(AGC)服务,但风机间的复杂气动相互作用增加了AGC控制难度。本文提出一种基于推力系数(主要通过变桨角调节)和偏航角控制动作的显式风速预测模型,并基于Navier-Stokes方程的数值实验验证其准确性。鉴于推力系数与偏航角调节涉及显著不同的时间尺度,设计了一种双阶段模型预测控制(MPC)策略。该策略以所提风速预测模型作为各风机风速的代理模型,第一阶段根据预测时刻风电场可用功率是否充足优化偏航角参考值;第二阶段协调控制各风机的推力系数与偏航角,以跟踪AGC功率指令并保持偏航角与第一阶段一致。算例验证了该双阶段MPC在风电场AGC功率跟踪中的有效性。

English Abstract

The wind farms are encouraged to provide Automatic Generation Control (AGC) services for the power grid. However, the complex aerodynamic interactions between turbines complicate the control of wind farms for AGC service. To address this issue, this paper proposes an explicit wind speed prediction model of each wind turbine based on the control actions of thrust coefficient (mainly realized by adjusting pitch angle) and yaw angle. Its accuracy is validated by numerical experiment based on Navier-Stokes equations. Since the adjustments of the thrust coefficients and yaw angles involve significantly different time scales, a dual-stage model predictive control (MPC) is proposed to coordinate them. It uses the proposed explicit wind speed prediction model as a surrogate for the wind speed of each turbine. In the first stage, it optimizes yaw angle reference based on whether or not the available wind farm power is sufficient at the predicted moments. In the second stage, it controls both thrust coefficient and yaw angle of each turbine, in order to track the AGC power signal and align the yaw angles with those determined in the first stage. Case studies demonstrate the effectiveness of the dual-stage MPC for AGC power tracking of wind farm.
S

SunView 深度解读

该双阶段MPC控制策略对阳光电源的风电储能系统具有重要参考价值。首先,文中提出的风速预测模型可优化ST系列储能变流器的功率调度算法,提升风储联合运行效率。其次,基于时间尺度分离的双阶段控制思路可应用于PowerTitan大型储能系统的多时间尺度功率控制,协调电池荷电状态管理(慢)与功率快速响应(快)。此外,该AGC控制策略也可集成到iSolarCloud平台,实现风电场与储能系统的智能协同控制。建议将此技术与阳光电源现有的GFM/GFL控制相结合,进一步提升储能产品在风电配套应用中的性能。