← 返回
风电变流技术 储能系统 模型预测控制MPC ★ 5.0

一种基于动态模型的碱性电解槽分钟级优化运行策略

A Dynamic Model-Based Minute-Level Optimal Operation Strategy for Alkaline Electrolyzers in Wind-Hydrogen Systems

作者 Aobo Guan · Suyang Zhou · Wei Gu · Zhi Wu · Xiaomeng Ai · Jiakun Fang
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年3月
技术分类 风电变流技术
技术标签 储能系统 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风电制氢系统 碱性电解槽 优化策略 模型预测控制 弃风率
语言:

中文摘要

为保障风电-氢能系统外送功率稳定,需应对碱性电解槽(AWE)调度周期长与风电短期波动不匹配的挑战。本文提出一种分钟级AWE优化运行策略,综合考虑其稳态电化学特性及温度、氢氧比的三阶动态模型,构建了以每分钟调节碱液流量、冷却流量和压力等细粒度变量实现电解功率快速跟踪风电波动的优化框架。通过改进模型预测控制(MPC)方法,结合模型简化与优化-仿真迭代流程,在保证计算效率的同时确保运行可行性。算例表明,该策略使AWE负荷范围扩展13.8%,弃风率降低15.06%,并兼顾系统效率、稳定性与安全性。

English Abstract

Maintaining the export power of wind-hydrogen systems within a stable range is critical for power system security. However, this is challenged by the mismatch between large time-scale of alkaline electrolyzer (AWE) scheduling strategies and the short-term fluctuations of wind power. To address this issue, this paper proposes a novel minute-level optimization strategy for AWE operation. Developing effective small time-scale strategies requires a detailed consideration of AWE dynamics. To this end, we first introduce its steady-state electrochemical characteristics and third-order dynamic models for both temperature and Hydrogen-to-Oxygen (HTO) ratio. Based on these refined models, we develop an AWE optimization framework that enables electrolysis power to track minute-level wind power fluctuations by dynamically adjusting fine-grained variables, such as the lye flow rate, cooling flow rate, and pressure, at 1-minute intervals. To overcome the computational challenges posed by the detailed modeling, we propose an improved model predictive control (MPC) framework. This framework incorporates model simplifications to improve computational efficiency, along with an optimization-simulation iterative procedure to ensure operational feasibility. Case studies demonstrate that the proposed strategy extends the AWE load range by 13.8% and reduces wind power curtailment by 15.06%. Additionally, synergies among control variables enable the system to achieve a balance between operational efficiency, stability, and security, highlighting the potential of this approach to enhance the performance of wind-hydrogen integrated systems.
S

SunView 深度解读

该研究的分钟级AWE优化运行策略对阳光电源储能产品线具有重要参考价值。其动态模型与MPC控制方法可直接应用于ST系列储能变流器的功率调节算法优化,特别是在风电配套储能场景中。通过引入类似的多变量优化框架,可提升PowerTitan系统在大规模风电消纳中的调节性能,扩大储能系统的实际负荷范围。该技术还可集成到iSolarCloud平台,实现储能系统与电解制氢设备的协同调度优化。这对提升阳光储能产品在风电-氢能耦合应用中的竞争力具有积极意义,同时为公司布局氢能领域提供了技术储备。