← 返回
基于Kautz函数的高效分布式MPC在含通信延迟的多区域电力系统负荷频率控制中的应用
Efficient Distributed MPC Using Kautz Functions for Load Frequency Control in Multi-Area Power Systems With Communication Delays
| 作者 | Shuangqing Yan · Xiuxing Yin · Yang Zheng |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年3月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 模型预测控制MPC |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 负荷频率控制 分布式模型预测控制 Kautz函数 多区域电力系统 延迟补偿机制 |
语言:
中文摘要
可再生能源的大规模接入导致电力系统供需不平衡和频率波动,传统集中式负荷频率控制(LFC)难以适应分布式能源的动态变化。本文提出一种基于离散Kautz函数的分布式模型预测控制(KDD-MPC)方法,利用其灵活的非相同极点配置逼近控制轨迹,显著降低计算复杂度。该方法有效处理LFC中的非线性约束,通过邻区信息反馈实现区域间协调,并引入时变通信延迟补偿机制以增强鲁棒性。在IEEE 39节点系统上的仿真结果表明,相较于PSO优化的PI控制器,扰动区域的平均绝对百分比控制误差(MAPACE)降低10.8%,且计算时间较传统MPC减少83.6%。
English Abstract
The rapid increase in renewable energy deployments and its integration into power grids bring challenges in balancing supply and demand, leading to frequency deviations. Consequently, various load frequency control (LFC) strategies have been used to ensure frequency stability. However, the centralized strategies exhibit limitations in efficiently responding to the evolving conditions of distributed energy sources. To address these challenges, this paper proposes a distributed model predictive control (MPC)-based method for LFC of multi-area power systems. Discrete Kautz functions, featuring flexible non-identical pole configuration, are utilized to approximate the predictive control trajectory, reducing MPC's computational complexity. The proposed Kautz functions-based distributed discrete MPC (KDD-MPC) effectively handles various nonlinear constraints in LFC and integrates information from neighboring areas as feedback to realize inter-area coordination. A delay compensation mechanism is implemented to improve robustness under time-varying communication delays. The performance of this LFC approach is evaluated through numerical experiments on the IEEE 39-bus system, showing a 10.8% reduction in the mean absolute percentage area control error (MAPACE) in the disturbed area with wind power participation, compared to the PSO-optimized PI controller. Meanwhile, the computational time is reduced by 83.6% relative to conventional MPC, with the prediction and control horizons set to 25.
S
SunView 深度解读
该分布式MPC控制技术对阳光电源储能和光伏产品线具有重要应用价值。Kautz函数降低计算复杂度的特点,可优化ST系列储能变流器和PowerTitan系统的频率调节性能,提升多机并联时的协调控制效果。其通信延迟补偿机制可增强大型储能电站的系统稳定性,对iSolarCloud平台的分布式调度具有借鉴意义。该方法可集成到储能PCS的GFM控制中,通过快速频率响应提供惯量支撑,并可用于多储能单元间的功率分配优化。建议在新一代ST2000/3000产品中验证该算法的工程实现效果。