← 返回
风电变流技术 储能系统 ★ 5.0

一种具有动态不确定性集合的可再生能源电力系统定量消纳保障鲁棒调度方法

A Quantitative Accommodation Guaranteed Robust Scheduling Method for Renewable Power System with Dynamic Uncertainty Set

作者 Lianyong Zuo · Shengshi Wang · Jiakun Fang · Yong Sun · Shichang Cui · Xiaomeng Ai
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年7月
技术分类 风电变流技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风力发电 可靠运行 鲁棒调度方法 随机接纳率 定量接纳保障
语言:

中文摘要

为降低碳排放,风电在电力系统中的渗透率不断提高,但其波动性和随机性给系统可靠运行与有效消纳带来挑战。本文提出一种面向风电接入电力系统的定量消纳保障鲁棒调度方法。首先构建风电出力的动态不确定性集,并据此提出可量化系统可实现消纳水平的随机消纳率指标;在此基础上,采用隐式仿射策略保证调度策略的非预见性,并结合系统最大与最小消纳率评估结果构建随机消纳率约束,将其嵌入调度模型以提供定量消纳保障。基于改进的6节点、14节点和118节点系统的仿真验证了所提方法的有效性与优越性。

English Abstract

Wind power generation (WPG) has been increasingly integrated into power systems to reduce carbon emissions. However, its inherent volatility and stochasticity have significantly challenged the reliable system operation and effective accommodation. In this paper, a robust scheduling method with a quantitative accommodation guarantee for power systems with WPG integration is proposed. First, a dynamic uncertainty set (DUS) of WPG is introduced, and a stochastic accommodation rate (SAR) indicator is accordingly proposed and derived to quantify the attainable accommodation level. Based on the DUS, a robust scheduling method is proposed, in which the implicit affine strategy (IAS) is adapted to guarantee the nonanticipativity of scheduling strategies. Moreover, a SAR constraint is carefully built according to the assessment result of the power system's maximal and minimal SAR and embedded into the scheduling model to provide a quantitative accommodation guarantee. An illustrative case is presented to validate the effectiveness of the SAR indicator. Numerical simulations in the modified 6-bus, 14-bus, and 118-bus power systems validate the superiority of the proposed scheduling method.
S

SunView 深度解读

该研究提出的定量消纳保障鲁棒调度方法对阳光电源储能产品线具有重要应用价值。可直接应用于PowerTitan大型储能系统的EMS能量管理算法中,通过动态不确定性集和随机消纳率指标,优化储能系统对风电波动的平抑效果。该方法也可集成到iSolarCloud平台,提升储能调度的智能化水平。对ST系列储能变流器的GFM/GFL控制策略优化也有重要启发,有助于提高储能系统在高比例新能源场景下的调节能力。建议在PowerTitan和ST系列产品的下一代控制算法中采用该方法,提升系统的经济性和可靠性。