← 返回
储能系统技术 储能系统 可靠性分析 ★ 4.0

一种避免模仿现象的短期概率波浪能功率预测方法

A Mimicking-Avoiding Short-Term Probabilistic Power Forecasting Method for Wave Energies

作者 Haoxuan Chen · Yinliang Xu · Hongbin Sun
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年10月
技术分类 储能系统技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★ 4.0 / 5.0
关键词 波浪能 预测模仿现象 SCP方法 QLB - GRU - KDE模型 波浪能发电预测
语言:

中文摘要

波浪能在可持续海洋开发中具有重要作用,但复杂的海洋气象条件导致波浪功率输出波动,引发预测中的模仿现象。此外,精确数值天气预报(NWP)数据的缺乏加剧了预测偏差。为此,本文提出一种序列特征感知(SCP)方法,并结合改进的混合模型——分位数自由损失门控循环单元核密度估计(QLB-GRU-KDE),用于浮式波浪能吸收系统的概率化功率预测。首先通过集成方法获取先验知识,再利用自由损失函数缓解模仿现象,并采用GRU与KDE融合模型实现概率预测。同时提出量化模仿严重程度的评估指标。基于真实波浪数据的实验验证了该模型在预测准确性、稳定性、可靠性和锐度方面的综合优越性。

English Abstract

Wave energy is essential for sustainable marine development. However, complex marine weather conditions cause fluctuating wave power outputs, resulting in a mimicking phenomenon in predictions. Moreover, the lack of accurate numerical weather prediction (NWP) data sources aggravates the prediction inaccuracy. To address these obstacles, a series characteristic perception (SCP) method coordinated with an advanced hybrid model, the quantile liberty loss gated recurrent unit kernel density estimation (QLB-GRU-KDE), is proposed for the floating point absorber wave energy system. In the first stage, the SCP method gains prior knowledge via ensemble approaches. In the second stage, a liberty loss function is used to mitigate the mimicking phenomenon. Furthermore, a hybrid model that integrates a GRU and KDE is adopted for the probabilistic forecasting of wave energy generation. In addition, a metric is proposed to evaluate the severity of the mimicking. A case study based on a real-world wave dataset is conducted, where both deterministic and probabilistic prediction approaches are examined. Comparisons with the cutting-edge counterparts reveal that the designed liberty loss effectively mitigates the mimicking issue. The comprehensive performance of the proposed model, including the accuracy, stability, reliability and sharpness in wave power prediction, is validated by multiple metrics.
S

SunView 深度解读

该波浪能概率预测方法对阳光电源储能系统和智能运维平台具有重要借鉴价值。其提出的序列特征感知与QLB-GRU-KDE混合模型可迁移至ST系列储能变流器的功率预测场景,解决海上风电、光伏等新能源输出波动导致的预测'模仿现象'问题。该方法的分位数自由损失函数可优化iSolarCloud平台的预测性维护算法,提升PowerTitan大型储能系统在复杂气象条件下的功率调度准确性。其概率化预测框架能增强ESS集成方案的可靠性评估能力,为构网型GFM控制提供更精准的功率预测输入,降低储能系统在海洋、海岛等极端环境下的运行风险,支撑阳光电源在新型储能领域的技术领先地位。