← 返回
风电变流技术 储能系统 多物理场耦合 深度学习 ★ 5.0

一种数据驱动的桨距角与转矩控制方法以提升风电场运行性能与效率

A Data-Driven Pitch Angle and Torque Control Method for Enhanced Wind Farm Operation Performance and Efficiency

作者 Luobin W · Sheng H · Ji Z · Guan B · Pengda W
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年9月
技术分类 风电变流技术
技术标签 储能系统 多物理场耦合 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可逆深度门控网络 风电场 桨距角 发电机转矩 疲劳载荷抑制
语言:

中文摘要

本文提出一种可逆深度门控网络(RDG-Net),用于风电场的桨距角(β)与发电机转矩(Tg)协同控制。该方法通过可逆实例归一化与深度可分离卷积(Revin-DSCNN)模型精确预测单个风电机组输出,抑制疲劳载荷并提升功率捕获效率。结合多头注意力与门控图循环神经网络(multi-GGRNN),有效建模机组间尾流耦合关系,避免高维数学建模带来的计算复杂性。RDG-Net部署于分布式服务器,实现在线训练,增强模型适应性与泛化能力。MATLAB仿真验证了其有效性。

English Abstract

This paper proposes a Reversible Depth-wise Gated Network (RDG-Net) that controls pitch angle ( ) and generator torque ( {T_g} ) for wind farm (WF). The proposed RDG-Net can accurately forecast the and {T_g} outputs of wind turbines (WTs) for fatigue load suppression, power extraction and calculation efficiency improvement. The RDG-Net eliminates errors from linearization approximations in WT model, thus enhancing control performance. The method employs a reversible instance and depth-wise separable convolution (Revin-DSCNN) model for WTs. Then, a framework based on multi-head attention and gated graph recurrent neural networks (multi-GGRNNs) is adopted to model coupling relationships among WTs, such as the wake effect that significantly impacts performance. The proposed method replaces high-dimensional mathematical models and avoids computational complexity for joint modeling all WTs. Moreover, the RDG-Net models are implemented on distributed servers to gather real-time WF data for online training, thus enhancing adaptability and generalization ability. The effectiveness of the proposed RDG-Net is validated through simulations in MATLAB.
S

SunView 深度解读

该数据驱动的控制方法对阳光电源风电变流器及储能系统具有重要参考价值。RDG-Net的可逆深度门控架构可优化应用于ST系列储能变流器的功率调度算法,提升系统响应速度与控制精度。其多头注意力机制对建模储能集群间的功率协调具有启发意义,可用于优化PowerTitan大型储能系统的群控策略。此外,该方法的分布式在线训练模式与iSolarCloud平台理念契合,可集成至智能运维系统实现储能、风电等多能源协同优化。特别是其疲劳载荷抑制技术,对提升储能变流器的寿命与可靠性具有实用价值。建议在ST系列产品的下一代控制算法中借鉴该深度学习框架。