← 返回
风电变流技术 储能系统 ★ 5.0

考虑隐变量相互辅助的电力系统高斯混合模型不确定性建模

Gaussian Mixture Model Uncertainty Modeling for Power Systems Considering Mutual Assistance of Latent Variables

作者 Xiao Yang · Yuanzheng Li · Yong Zhao · Yang Li · Guokai Hao · Yan-Wu Wang
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年1月
技术分类 风电变流技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电力系统 高斯混合模型 期望最大化算法 潜在变量互补 不确定性建模
语言:

中文摘要

高斯混合模型(GMM)与狄利克雷过程混合模型(DPMM)常用于刻画电力系统中的不确定性,通常采用期望最大化(EM)算法求解。然而,在处理大规模不确定变量数据时,传统方法难以在较低时间消耗下准确获取模型参数。为此,本文提出一种考虑隐变量相互辅助的GMM不确定性建模方法。首先构建不确定变量的GMM,利用条件概率描述隐变量间的相互辅助关系;进而改进EM算法,在E步和M步中引入条件概率,并重新推导GMM参数的闭式解。基于澳大利亚实际风电与负荷数据的实验结果表明,所提方法在建模效率与精度方面均优于传统GMM与DPMM。

English Abstract

Gaussian mixture model (GMM) and Dirichlet process mixture model (DPMM) are the primary techniques used to characterize uncertainties in power systems, which are commonly solved by expectation-maximization (EM) algorithm. However, for the massive data of uncertain variables, the algorithm encounters challenges in accurately obtaining GMM and DPMM with a lower time consumption. To address this issue, we propose a method for GMM uncertainty modeling in power systems considering the mutual assistance of latent variables. Specifically, the GMM of uncertain variables is first constructed, and the conditional probability is employed to characterize the mutual assistance of latent variables. Then, an improved EM algorithm is developed to obtain the optimal GMM parameters, in which the expectation step (E-step) and maximization step (M-step) of the algorithm are revised using the conditional probability. Importantly, the closed-form solutions for GMM parameters are rederived in the revised E-step and M-step. Finally, the proposed uncertainty modeling method is compared with the traditional GMM and DPMM on actual wind power and load data from Australia. The proposed method performs the efficiency and accuracy in characterizing uncertainty.
S

SunView 深度解读

该研究提出的GMM不确定性建模方法对阳光电源储能和风电产品具有重要应用价值。该方法可应用于ST系列储能变流器和PowerTitan系统的功率预测与调度优化,提升系统对风电、负荷等不确定性的建模精度。特别是在大规模储能电站中,该方法可提高计算效率,为iSolarCloud平台提供更准确的发电/用电预测。这对优化储能系统的充放电策略、提升调频调峰性能具有重要意义。建议将该技术集成到储能EMS和电站群智能调度系统中,可显著提升阳光电源储能产品在电网侧应用的竞争力。