← 返回
基于感知损失的DCGAN与VGG16集成模型在电致发光图像中增强光伏缺陷检测
Enhanced Photovoltaic Defect Detection Using Perceptual Loss in DCGAN and VGG16-Integrated Models on Electroluminescence Images
| 作者 | Nadia Drir · Adel Mellit · Maamar Bettayeb · Mahmoud Dhimish |
| 期刊 | IEEE Journal of Photovoltaics |
| 出版日期 | 2025年3月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 GaN器件 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏组件 缺陷检测 生成对抗网络 缺陷分类 质量控制 |
语言:
中文摘要
光伏(PV)组件中的缺陷会显著影响其效率和可靠性,因此精确检测对于质量控制至关重要。本研究提出了一种改进的生成对抗网络框架,将深度卷积生成对抗网络(DCGAN)与视觉几何组16(VGG16)以及感知损失函数相结合,以生成高质量的合成缺陷图像并改进缺陷分类。所提出的模型将分类准确率从84%提高到了90%,表现出优于标准DCGAN的性能。主要改进包括生成更逼真的合成图像、减少图像质量差异以及解决缺陷数据集的类别不平衡问题。该改进框架在呈现罕见和复杂缺陷方面表现尤为出色,能改善具有挑战性的缺陷模式的分类结果,同时保持合成数据的多样性和真实性。尽管在捕捉精细缺陷细节方面存在一些局限性,但这种方法为光伏制造中的缺陷检测和合成图像生成树立了标杆。它还为工业生产线的实时应用提供了潜力,有助于实现更高效的质量控制。
English Abstract
Defects in photovoltaic (PV) modules significantly impact their efficiency and reliability, making the accurate detection essential for quality control. This study presents an enhanced generative adversarial network framework, combining deep convolutional generative adversarial network (DCGAN) with visual geometry group 16 (VGG16) and a perceptual loss function, to generate high-quality synthetic defect images and improve defect classification. The proposed model increases classification accuracy from 84% to 90%, demonstrating superior performance over the standard DCGAN. Key improvements include generating more realistic synthetic images, reducing image quality discrepancies, and addressing class imbalances in defect datasets. The enhanced framework performs particularly well in representing rare and complex defects, improving classification outcomes for challenging patterns while maintaining diversity and realism in synthetic data. Despite some limitations in capturing fine defect details, this approach establishes a benchmark for defect detection and synthetic image generation in PV manufacturing. It also offers potential for real-time applications in industrial production lines, ensuring more efficient quality control.
S
SunView 深度解读
该基于DCGAN与VGG16的EL图像缺陷检测技术对阳光电源光伏产品线具有重要应用价值。可直接应用于SG系列逆变器的生产质量控制环节,通过电致发光成像快速识别组件微裂纹、热斑等隐性缺陷,提升出厂检测效率。感知损失函数增强的语义特征提取能力,可集成至iSolarCloud智能运维平台,实现电站组件的在线健康诊断与预测性维护。该技术对PowerTitan储能系统中光伏侧组件的全生命周期质量管理同样适用,通过AI自动化检测替代人工巡检,降低运维成本,提升系统可靠性。建议结合阳光电源现有MPPT算法与IV曲线诊断技术,构建多维度缺陷识别体系。