← 返回
风电变流技术 储能系统 ★ 5.0

基于多元变分模态分解的高比例风电电力系统次同步振荡源定位

Subsynchronous Oscillation Source Location in Power System with High Penetration of Wind Power Using Multivariate Variational Mode Decomposition

作者 Tao Jiang · Bohan Liu · Xue Li · Andrea Mazza · Guoqing Li · Enrico Pons
期刊 IEEE Transactions on Power Systems
出版日期 2025年4月
技术分类 风电变流技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 次同步振荡 源定位 多元变分模态分解 暂态能量流 希尔伯特变换
语言:

中文摘要

准确、及时地从测量数据中提取次同步振荡(SSO)分量并定位 SSO 源对于 SSO 抑制至关重要。现有的基于暂态能量流(TEF)的 SSO 定位方法存在定位精度低和鲁棒性差的问题。为克服传统 TEF 在 SSO 源定位方面的不足,本文提出一种基于多元变分模态分解(MVMD)的 SSO 源定位方法,用于从测量数据中定位 SSO 源。首先,构建包含电压和电流测量值的各发电机多通道测量矩阵。然后,利用 MVMD 方法从所构建的多通道测量矩阵中同时分解出多通道本征模态函数(IMF),实现从测量数据中同时分解出 SSO 分量。此外,根据希尔伯特变换(HT)识别与 SSO 模态相关的 IMF。利用所识别的 IMF 计算基于 MVMD 的 TEF 并定位 SSO 源。最后,利用改进的四机 11 节点测试系统的仿真数据和华北地区固原 SSO 事件的现场测量数据对所提方法的性能进行评估。结果验证了所提方法在 SSO 源定位方面的准确性和有效性。

English Abstract

Accurately and promptly extracting subsynchronous oscillation (SSO) components from measurements and locating SSO sources are crucial for SSO suppression. Existing transient energy flow (TEF) based SSO location methods suffer from low location accuracy and poor robustness. To cope with the shortcoming of the traditional TEF in SSO source location, this paper proposes a multivariate variational mode decomposition (MVMD) based SSO source location method to locate the SSO source from the measurements. Firstly, the multi-channel measurement matrix of each generator, including voltage and current measurements, is formed. Then, the multi-channel intrinsic mode functions (IMFs) are simultaneously decomposed from the formed multi-channel measurement matrix by using the MVMD approach, enabling the simultaneous decomposition of SSO components from measurements. Furthermore, the IMFs associated with the SSO mode are identified according to the Hilbert transform (HT). Using the identified IMFs, the MVMD-based TEF is calculated and the SSO source is located. Finally, the performance of the proposed method is evaluated using the simulation data of the modified 4-machine 11-bus test system and the field measurements from the Guyuan SSO event in the North China region. The results validate the accuracy and effectiveness of the proposed method in the SSO source location.
S

SunView 深度解读

该研究对阳光电源ST系列储能变流器和大型储能系统的稳定性控制具有重要参考价值。MVMD方法可集成到iSolarCloud平台的振荡监测模块中,提升储能系统的次同步振荡诊断能力。特别是在大规模风光储联合并网场景下,该技术有助于优化ST储能变流器的GFM控制策略,提前识别和抑制系统振荡风险。建议将此方法应用于PowerTitan储能系统的预测性维护,并结合VSG控制算法提升系统的抗扰动能力。这对提高阳光储能产品在高比例新能源接入场景下的竞争力具有积极意义。