← 返回
训练集再应用:基于相似样本的电力系统主导失稳模式识别物理可靠框架
Reapplication of Training Set: A Physically Reliable Framework for Power Systems Dominant Instability Mode Identification Using Similar Samples
| 作者 | Yutian Lan · Shanyang Wei · Wei Yao · Yurun Zhang · Yuxin Yang · Jinyu Wen |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年8月 |
| 技术分类 | 功率器件技术 |
| 技术标签 | SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 主导不稳定模式识别 深度学习 可解释性算法 可靠性 准确性 |
语言:
中文摘要
准确且在物理上可靠地识别主导不稳定模式(DIM)对于确保电力系统的安全稳定运行至关重要。数据驱动模型,尤其是深度学习(DL),在应对这一挑战方面取得了显著进展。然而,深度学习的“黑箱”特性限制了其可解释性,导致结果不可靠,这与电力系统严格的可靠性要求相冲突。为解决这一问题,本文提出了一种新颖的 DIM 识别框架,通过重新应用训练集样本提高识别的准确性和可靠性。首先,提出了一种训练方法,以增强 DIM 模型的抗噪声能力和对相似样本的聚类能力,实现高精度的 DIM 识别。此外,还开发了一种两阶段可解释性算法。在第一阶段,固定半径 k 近邻(KNN)算法对目标样本的 DIM 模型低维特征进行匹配,以找到相似样本。在第二阶段,嵌入知识的弗雷歇距离分析目标样本与相似训练样本之间的差异,利用最相似样本的物理判别逻辑来指导预测并评估可靠性。该框架的有效性在 CEPRI 36 节点电力系统和东北电网(2131 节点)上得到了验证,证明其在 DIM 预测准确性和物理可靠性方面均有提升。
English Abstract
Accurate and physically reliable identification of the dominant instability mode (DIM) is crucial for ensuring secure and stable power system operation. Data-driven models, particularly deep learning (DL), have achieved significant progress in addressing this challenge. However, the “black-box” nature of DL limits interpretability, leading to unreliable outcomes that conflict with the stringent reliability requirements of power systems. To solve this, a novel DIM identification framework is proposed to improve accuracy and reliability by re-applying training set samples. First, a training method is proposed to enhance the noise robustness and ability to cluster similar samples of the DIM model, achieving high-accuracy DIM identification. Furthermore, a two-stage interpretability algorithm is developed. In Stage 1, a fixed-radius k-nearest neighbor (KNN) algorithm matches the low-dimensional features of the DIM model for the target sample to find similar samples. In Stage 2, the knowledge-embedded Fréchet distance analyzes the differences between the target sample and similar training samples, using the physical discriminative logic of the most similar sample to guide predictions and assess reliability. The effectiveness of the proposed framework is validated on the CEPRI 36-bus power system and the Northeast China Power System (2131 buses), demonstrating improvements in both DIM prediction accuracy and physical reliability.
S
SunView 深度解读
该失稳模式识别技术可应用于阳光电源智慧能源管理系统的稳定性监控。通过数据驱动的失稳模式识别,及时发现光伏并网系统和储能系统的潜在失稳风险,优化控制策略,提升大规模新能源并网的稳定性,为电网安全运行提供预警支持。