找到 1 条结果
训练集再应用:基于相似样本的电力系统主导失稳模式识别物理可靠框架
Reapplication of Training Set: A Physically Reliable Framework for Power Systems Dominant Instability Mode Identification Using Similar Samples
Yutian Lan · Shanyang Wei · Wei Yao · Yurun Zhang 等6人 · IEEE Transactions on Power Systems · 2025年8月
准确且在物理上可靠地识别主导不稳定模式(DIM)对于确保电力系统的安全稳定运行至关重要。数据驱动模型,尤其是深度学习(DL),在应对这一挑战方面取得了显著进展。然而,深度学习的“黑箱”特性限制了其可解释性,导致结果不可靠,这与电力系统严格的可靠性要求相冲突。为解决这一问题,本文提出了一种新颖的 DIM 识别框架,通过重新应用训练集样本提高识别的准确性和可靠性。首先,提出了一种训练方法,以增强 DIM 模型的抗噪声能力和对相似样本的聚类能力,实现高精度的 DIM 识别。此外,还开发了一种两阶段可解...
解读: 该失稳模式识别技术可应用于阳光电源智慧能源管理系统的稳定性监控。通过数据驱动的失稳模式识别,及时发现光伏并网系统和储能系统的潜在失稳风险,优化控制策略,提升大规模新能源并网的稳定性,为电网安全运行提供预警支持。...