← 返回
一种基于物理机理的SiC MOSFET与GaN HEMT变换器通用开关过程预测简易模型
A Simple and Physically Insightful Model for Generalized Switching Prediction of SiC MOSFET and GaN HEMT Based Converters
| 作者 | Christoph H. van der Broeck · Dennis Bura · Luis Camurca |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年4月 |
| 技术分类 | 功率器件技术 |
| 技术标签 | SiC器件 GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | SiC MOSFETs GaN HEMTs 开关瞬态预测模型 人工神经网络 系统级行为损耗模型 |
语言:
中文摘要
本研究提出了一种用于预测电力电子半桥中碳化硅(SiC)金属 - 氧化物 - 半导体场效应晶体管(MOSFET)和氮化镓(GaN)高电子迁移率晶体管(HEMT)开关瞬态的简单且具有物理洞察力的模型。所提出的模型具有混合结构:它将基于人工神经网络(ANN)的器件电流和电容预测与代表开关单元和栅极驱动电路主要寄生参数的状态空间模型相结合。基于人工神经网络的器件模型有助于以简单的模型结构来表征不同的器件,这一点通过碳化硅MOSFET和氮化镓HEMT得到了验证。该状态空间模型是基于开关单元的最新模型方程推导得出的,但其具有独特的、具有物理洞察力的形式,能够将电容性和电感性系统动态解耦。构成该模型的少数显式方程便于在仿真算法和代码中实现,有助于实现快速仿真。此外,该模型形式允许推导状态框图,该框图首次表征了半桥的整个系统动态,包括所有因果关系和状态交叉耦合。对于碳化硅MOSFET和氮化镓增强型HEMT,研究表明,在利用推导得出的寄生参数和静态器件数据(例如来自数据表、曲线追踪仪或技术计算机辅助设计(TCAD)数据)进行参数化后,模型预测结果与双脉冲测量的开关瞬态结果偏差较小。基于开关预测,本文提出了一种为半桥在硬开关、部分硬开关和软开关操作下生成系统级行为损耗模型的方法。该模型可以快速计算并应用于系统级变流器仿真,从而将开关单元和系统级设计领域联系起来。总体而言,本文提出的方法能够对不同封装和系统环境中的不同器件进行快速有效的分析,这对于未来变流器的数据驱动设计至关重要。
English Abstract
A simple and physically insightful model for predicting the switching transients of SiC MOSFETs and GaN HEMTs in power electronic half-bridges is proposed in this research. The proposed model has a hybrid structure: It combines an artificial neural network (ANN) based prediction of device currents and capacitances with a state-space model representing the dominant parasitics of the switching cell and gate drive circuitry. The ANN-based device model facilitates the representation of different devices in a simple model structure, which is demonstrated using both, SiC MOSFETs and GaN HEMTs. The state-space model is derived based on state-of-the-art model equations of a switching cell but features a unique physically insightful format that decouples capacitive and inductive system dynamics. The few explicit equations that make up the model facilitate its implementation in simulation algorithms and code and can contribute to fast simulation speed. In addition, the model format allows the derivation of a state-block diagram that, for the first time, represents the entire system dynamics of a half bridge, including all cause-and-effect relationships and state cross-couplings. For SiC MOSFETs and GaN e-mode HEMTs, it is shown that the model prediction, after parameterization with derived parasitics and static device data, e.g. from data sheets, curve tracer or TCAD data, matches the switching transients of double-pulse measurements with small deviations. On the basis of the switching prediction, a procedure is proposed for the generation of a system-level behavioral loss model for half-bridges in hard, partially-hard and soft switching operation. This can be rapidly computed and applied in system-level converter simulation, thus linking the switching cell and system-level design domain. Overall, the methodology presented in this paper enables fast and effective analysis of different devices in different packages and system environments, which is critical for data-driven design of future converters.
S
SunView 深度解读
该开关建模技术对阳光电源的高频化产品设计具有重要指导意义。模型可直接应用于SG350HX等1500V大功率光伏逆变器和PowerTitan储能变流器的SiC器件优化设计,提升开关频率和功率密度。通过准确预测开关损耗和EMI特性,可优化驱动电路和散热设计,提高产品可靠性。对车载OBC等对功率密度要求高的产品,该模型可指导GaN器件的高频应用。模型的通用性和简洁性有助于缩短产品开发周期,降低设计成本。这对阳光电源在高频化、轻量化的技术路线上具有重要参考价值。