← 返回
储能系统技术 储能系统 DAB ★ 5.0

一种多阶段DRO-SDDP方法用于高渗透率可再生能源电力系统中多类型储能与柔性资源规划

A Multi Stage DRO-SDDP Approach for Planning Multi-Type Energy Storage Systems and Flexible Resources in High-Penetration Renewable Power Systems

作者 Jianzhou Feng · Zechun Hu · Xiaoyu Duan · Shaorong Cai · Peng Zhang
期刊 IEEE Transactions on Industry Applications
出版日期 2025年3月
技术分类 储能系统技术
技术标签 储能系统 DAB
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源 负荷侧灵活资源 电池储能系统 多阶段随机规划 分布鲁棒随机对偶动态规划
语言:

中文摘要

随着可再生能源(RE)广泛接入电力系统,其固有的波动性给电力和能量的时空平衡带来了巨大挑战。负荷侧柔性资源(FRs)与电池储能系统(ESSs)能够为日内发电与负荷需求的平衡做出重要贡献。另一方面,抽水蓄能、氢储能、压缩空气储能等具有较长放电时长的储能系统能够平衡日间甚至月间的电力供需。为在规划阶段考虑多种柔性资源和储能系统的互补特性,本文首先构建了联合规划模型。考虑到在周期性决策过程后,不确定信息会逐步显现,该规划模型被表述为一个多阶段随机规划问题(MSSP),即决策仅依据当前阶段可获取的信息依次做出。随后,为应对多阶段的不确定性,采用分布鲁棒随机对偶动态规划(DRO - SDDP)方法求解所提出的模型。为加速算法,采用了动态采样、动态割生成和并行计算等技术。最后,在改进的HRP - 38系统上进行了仿真和敏感性分析。仿真结果验证了所提方法的有效性。

English Abstract

With the widespread integration of renewable energy (RE) into the power systems, the inherent fluctuations of renewable energy present formidable challenges to the temporal and spatial power and energy balances. Load-side flexible resources (FRs), along with battery energy storage systems (ESSs), can make significant contribution to balance the intra-day power generation and load demand. On the other hand, ESSs with longer discharging duration like pumped hydro storage and hydrogen storage, compressed air energy storage, can balance inter-day and even inter-month power supply and demand. To consider the complementary characteristics of multiple FRs and ESSs in the planning stage, firstly a joint planning model is built. Considering that the uncertain information reveals stage by stage after the periodical decision-making process, the planning model is formulated as a multi-stage stochastic programming problem (MSSP), where decisions are made sequentially based solely on the information available at the present stage. Subsequently, to deal with the uncertainties across multiple stages, a distributionally robust stochastic dual dynamic programming (DRO-SDDP) approach is employed to solve the proposed model. To accelerate the algorithm, dynamic sampling, dynamic cut generation and parallel computing are adopted. Finally, simulations and sensitivity analyses are conducted on the modified HRP-38 system. Simulation results verify the effectiveness of the proposed method.
S

SunView 深度解读

该多阶段DRO-SDDP规划方法对阳光电源PowerTitan储能系统和ST系列储能变流器的容量配置优化具有重要应用价值。通过分布鲁棒优化处理可再生能源不确定性,可指导阳光电源在大型储能项目中实现多类型储能(电化学+飞轮)的协同配置,优化功率型与能量型储能比例。该方法的多阶段决策框架可集成至iSolarCloud平台,为储能系统投资规划提供决策支持,结合阳光电源GFM构网型控制技术,提升高比例新能源场景下储能系统的经济性与灵活调节能力,支撑源网荷储一体化解决方案的优化设计。