← 返回
面向绿色人工智能:基于深度学习与滤波技术的商用锂离子电池健康状态估计与退化分析的节能方法
Towards Green AI: Energy-Efficient State of Health Estimation and Degradation Analysis of Commercial Lithium-Ion Batteries Based on Deep Learning and Filter Technique Approach
| 作者 | Deepak Kumar · Mujeeb Ahmed · Majid Jamil · M. Rizwan · Amrish K. Panwar |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 工商业光伏 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 锂电池健康状态估计 冗余减少 滤波技术 门控循环单元 能耗降低 |
语言:
中文摘要
大型数据集中冗余的相似数据点会增加数据集的规模、存储量、内存使用量、训练时间和计算资源需求,导致深度学习(DL)模型效率显著降低。这些低效问题会降低模型性能并增加能耗。现有的基于深度学习的锂离子电池健康状态(SOH)估计方法常常面临计算需求高、精度低和能耗高等挑战。这些模型为了获得准确的结果需要消耗大量能量,从而导致更高的电力需求和碳足迹。因此,本文提出了一种基于冗余减少方法的新型过滤技术(FT)。该方法可提高数据集的质量,即减小数据集规模、降低内存利用率并减少能耗。将这种新型过滤技术与门控循环单元(FT - GRU)模型相结合,并在六种不同类型的SOH数据集上进行了测试。该方法的主要目标是提高性能并降低能耗。通过配置了FT的所提出模型与传统模型进行对比测试,以研究SOH估计的有效性以及模型的能力和局限性。FT - GRU模型在实验室数据集和公开可用的美国国家航空航天局(NASA)动态数据集(包括B1、B2、B05、B06、B07和B18)上进行了大量测试。B1和B2数据集是在室温下从本实验室收集的。与其他现有方法相比,FT - GRU方法在均方根误差(RMSE)上提高了75.96%,在均方误差(MSE)上提高了99.49%,在平均绝对误差(MAE)上提高了93.07%,计算时间和能耗分别降低了25%至70.76%和69.50%至82.38%。
English Abstract
The redundant similar data points in the large datasets increase the dataset volume, storage, memory usage, training time, and computational resources, leading to significant inefficiency in the deep learning (DL) models. These inefficiencies reduce model performance and increase energy consumption. The existing DL-based approaches for state of health (SOH) estimation of lithium-ion batteries often face challenges such as high computational demands, low accuracy, and high energy consumption. These models require high energy for accurate results and contribute to higher electricity demand and carbon footprints. Therefore, this work proposes a novel filter technique (FT) based on the redundancy reduction approach. This approach improves the quality of the dataset, i.e., reduces dataset size, memory utilization, and energy consumption. This novel FT was incorporated with the gated recurrent unit (FT-GRU) model and tested on six different types of SOH datasets. The key objective of this approach is to enhance performance and lower energy consumption. A comparison examination was performed by proposed models configured with FT and traditional models to investigate the SOH estimation effectiveness and the model's abilities and limits. The FT-GRU model was significantly tested on laboratory and publicly available NASA dynamic datasets, including B1, B2, B05, B06, B07 and B18. The B1 and B2 datasets were collected from our laboratory at room temperature. The FT-GRU approach achieved percentage improvements, 75.96% of RMSE, 99.49% of MSE, 93.07% of MAE, and computational time and energy consumption ranges from 25% to 70.76% and 69.50% to 82.38%, respectively, in comparison to the other existing approaches.
S
SunView 深度解读
该节能型电池健康状态估计技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。通过滤波技术减少冗余数据,可显著降低BMS系统的计算负荷和能耗,特别适用于大规模储能电站的实时健康监测。该方法可集成至iSolarCloud云平台,实现边缘侧轻量化SOH估算与云端深度分析的协同,在保证预测精度的同时降低通信带宽和服务器算力需求。对于工商业储能场景,该技术能延长电池寿命预测周期,优化容量配置策略,提升系统全生命周期经济性,契合阳光电源绿色低碳的产品理念。