← 返回
通过生物源驱动的能源供应结合碳捕集与封存
CCS)实现矿物工业脱碳的负二氧化碳排放
| 作者 | Mohamed M.Ibrahi · Abdelghafour Zaabou |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 345 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 工商业光伏 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Biomass and CCUS enable carbon-negative mineral processing pathways. |
语言:
中文摘要
摘要 实现干燥和煅烧等高能耗作业的脱碳,对于使矿物加工行业与全球气候目标保持一致至关重要。然而,现有工业设施烟气流中通常较低的CO2浓度,给具有成本效益的碳捕集带来了重大挑战。本研究针对矿产行业亟需快速脱碳的问题,通过对一个磷酸盐加工工厂(作为代表性案例)应用七种改造方案进行全面的技术经济评估,提出解决方案。所评估的策略将基于生物质的燃料替代与成熟的燃烧后碳捕集技术相结合,具体包括单乙醇胺(MEA)吸收法和钙循环(CaL),并辅以废气再循环(EGR)和先进的相变热回收集成等工艺优化措施。利用ASPEN Plus进行过程模拟,并结合SEA工具开展经济性分析,结果表明,采用生物质替代会使热能需求增加约13%。EGR可将该增幅降低最多2个百分点,同时提高烟气中的CO2浓度。此外,所有碳捕集整合方案中,除仅依赖内部废热回收的方案外,其余均实现了净负排放。其中,CaL实现了最高的脱碳水平,达到−125.76 kg CO2/吨磷酸盐。配备蒸汽回收的MEA系统在无需外部供热的情况下可捕集高达95%的CO2。在可再生能源供电条件下,配备热回收的MEA系统的单位避免CO2排放的一次能源消耗(SPECCA)最低,为1.28 MJ/kg-CO2,优于CaL(约6 MJ/kg-CO2)。此外,结合EGR和热回收的MEA系统表现出最优的成本性能,其CO2减排成本低至25.75欧元/吨CO2,在当前及未来的碳定价机制下展现出高度的成本效益。这些发现表明,将生物质能源、碳捕集与热回收技术相集成,为磷酸盐及其他类似矿物行业的深度脱碳提供了一条切实可行且可规模化推广的技术路径。
English Abstract
Abstract Decarbonizing energy-intensive operations such as drying and calcination is essential for aligning the mineral processing sector with global climate targets. However, the low CO 2 concentrations typically found in flue gas streams from existing industrial plants present a major challenging to cost-effective carbon capture. This study addresses the urgent need for rapid decarbonization in the mineral sector through a comprehensive techno-economic assessment of seven retrofitting scenarios applied to a phosphate processing plant, used as a representative case. The evaluated strategies integrate biomass-based fuel substitution with mature post-combustion carbon capture technologies, specifically Monoethanolamine (MEA) absorption and Calcium Looping (CaL), alongside process enhancements such as Exhaust Gas Recirculation (EGR) and advanced phase-change heat recovery integration. Process simulations using ASPEN Plus, combined with economic analysis via the SEA tool, show that biomass substitution increases thermal energy demand by ∼13 %. EGR reduces this by up to 2 % while enriching CO 2 in the flue gas. Additionally, all carbon capture integration scenarios, except the one relying solely on internal waste heat recovery, achieved net-negative emissions. Among them, CaL achieved the highest decarbonization, reaching −125.76 kg CO 2 /ton-phosphate. MEA systems with steam recovery captured up to 95 % of CO 2 without external heat. Under renewable electricity conditions, MEA with heat recovery yielded the lowest Specific Primary Energy Consumption per CO 2 Avoided (SPECCA) at 1.28 MJ/kg-CO 2 , outperforming CaL (∼6 MJ/kg-CO 2 ). Furthermore, the MEA system incorporating EGR and heat recovery achieved the most favorable cost performance, with CO 2 avoidance costs as low as €25.75/ton-CO 2 , offering a highly cost-effective solution under current and future carbon pricing schemes. These findings demonstrate that integrating biomass, carbon capture, and heat recovery offers a practical, scalable pathway for deep decarbonization in phosphate and similar mineral industries.
S
SunView 深度解读
该研究为矿业脱碳提供了生物质能+碳捕集的负碳路径,对阳光电源工商业储能系统具有重要启示。ST系列PCS可配合工业园区生物质热电联产系统,通过储能平抑可再生能源波动,降低碳捕集设备的电力成本。研究中MEA系统配合余热回收实现95%碳捕集率且无需外部热源,验证了能源梯级利用的经济性。阳光电源可将PowerTitan储能方案与工业光伏、余热发电集成,结合iSolarCloud平台实现碳捕集设备与可再生能源的智能协同调度,助力高耗能行业实现€25.75/吨CO2的低成本深度脱碳目标。