← 返回
基于TimeGAN的多样化合成数据生成结合基于BERT的模型用于电动汽车电池SOC预测:一种前沿方法
TimeGAN-Based Diversified Synthetic Data Generation Following BERT-Based Model for EV Battery SOC Prediction: A State-of-The-Art Approach
| 作者 | Prasanta Kumar Mohanty · Premalata Jena · Narayana Prasad Padhy |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电动汽车 电池荷电状态 数据缺失 时间生成对抗网络 双向编码器表征模型 |
语言:
中文摘要
近年来,电动汽车(EV)的使用量不断增长,这就需要开发出高效且安全的电池模块和管理系统。估算车辆电池的荷电状态(SOC)是一个关键因素,它会影响车辆的续航里程并优化充电偏好。文献中的大量研究尝试通过使用电池电压、电流和温度作为输入参数来估算SOC。目前存在两个重大研究空白。其一,大多数研究忽略了诸如车速和牵引力等对电池性能有直接影响的参数。这就需要一个更强大的模型来确定SOC,同时考虑车辆的额外动态因素。其二,缺乏能够预测SOC的定性且多样化的电池数据集,这对实际应用而言是一个重大限制。此外,数据采集过程繁琐、耗时,还存在隐私问题。为缓解上述问题,本文提出了一种基于时间序列生成对抗网络(TimeGAN)的模型,该模型能在多个驾驶循环的各种环境温度条件下生成多样化的合成数据集,旨在提高SOC的估算精度。随后,提出了一种基于双向编码器表征(BERT)的模型,作为一种利用可模拟现实场景的组合式、可扩展数据集有效预测SOC的方法。通过将这些方法与现有技术进行比较,并使用多种评估指标,验证了它们的准确性和效率。
English Abstract
The recent growth of electric vehicles (EVs) usage has necessitated the development of battery modules and management systems that are both highly efficient and safe. The estimation of the state of charge (SOC) of a vehicle's battery is a critical factor that impacts the range of the vehicle and optimizes charging preferences. Numerous studies in the literature attempt to estimate it through the use of battery voltage, current, and temperature as input parameters. There are currently two significant research gaps. Firstly, the majority neglected parameters such as vehicle speed and tractive effort, which have a direct impact on battery performance. This requires a more robust model to determine the SOC, taking into account the additional dynamics of the vehicle. Secondly, there is a lack of qualitative and diverse battery datasets that are capable of predicting SOC, which is a significant limitation for practical applications. Furthermore, the procedure of acquiring data is laborious, time-consuming, and has privacy issues. In order to mitigate the aforementioned concerns, this paper presents a model based on a time-series Generative Adversarial Network (TimeGAN) that produces a diverse synthetic dataset across a wide range of ambient temperature conditions over numerous driving cycles. The objective is to improve the estimation of the SOC. Following this, a model based on Bidirectional Encoder Representations from Transformers (BERT) is suggested as a means to effectively forecast the SOC using a combined, scalable dataset that can mimic the real-world scenario. By comparing these methods to existing techniques and using a variety of evaluation metrics, their accuracy, and efficiency are validated.
S
SunView 深度解读
从阳光电源储能系统和新能源汽车业务的视角来看,这篇论文提出的TimeGAN-BERT混合方案为电池管理系统(BMS)的核心技术——SOC预测提供了创新思路,具有重要的借鉴价值。
该研究的核心突破在于两个方面:首先,通过TimeGAN生成合成数据集,有效解决了储能和电动汽车领域长期面临的高质量电池数据稀缺问题。对于阳光电源而言,这意味着可以在有限的实测数据基础上,通过生成式AI技术快速构建覆盖多种工况、温度环境和充放电场景的训练数据,大幅降低电池测试的时间成本和设备投入,加速BMS算法的迭代优化。其次,论文将车辆速度、牵引力等动态参数纳入SOC预测模型,这对于我们开发车载充电系统和V2G(车网互动)解决方案具有直接指导意义,能够更精准地预测电池在复杂工况下的状态变化。
从技术成熟度评估,TimeGAN和BERT均为成熟的深度学习架构,但其在电池领域的应用仍处于学术验证阶段。实际工程化需要解决几个关键问题:合成数据与真实场景的一致性验证、模型在边缘计算设备上的轻量化部署、以及极端工况下的鲁棒性保障。对于阳光电源的储能系统业务,该技术可与现有的智能运维平台结合,通过生成多样化的电池老化场景数据,提升储能电站全生命周期的SOC/SOH预测精度,优化充放电策略,延长电池寿命。
建议公司AI研发团队跟踪该技术方向,探索在大型储能项目和电动汽车充电桩业务中的应用试点,同时关注数据合成技术在光伏发电功率预测等其他场景的迁移潜力。