← 返回
过流应力下氮化镓高电子迁移率晶体管失效机制的实验与仿真研究
Experimental and Simulation Study on the Failure Mechanism of GaN HD-GIT Under Overcurrent Stress
| 作者 | Xi Jiang · Jing Chen · Chaofan Pan · Hao Niu · Song Yuan · Xiangdong Li |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年8月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 GaN器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 氮化镓高电子迁移率晶体管 过流应力 失效机制 热失控 漏极/衬底击穿 |
语言:
中文摘要
本文研究了氮化镓高电子迁移率晶体管(GaN HEMTs)在过流应力下的失效机制。评估了氮化镓混合漏极嵌入式栅极注入晶体管(HD - GIT)器件在不同应力条件下的过流行为,并确定了主要的失效模式。分阶段分析了GaN器件在过流事件期间的波形,并剖析了每个阶段背后的物理机制。进行了数值技术计算机辅助设计(TCAD)模拟,以分析过流应力期间的电场分布和电子迁移率的变化。通过模拟分析研究了热失控和漏极/衬底击穿失效。结果表明,GaN HEMTs中的热失控失效是由于电子迁移率降低和沟道内电场增加引发的,热应力在接入区累积导致的。漏极和衬底击穿失效主要是由于漏极p - GaN区域的空穴注入,在漏极和衬底之间产生高垂直电场所致。此外,通过实验测试验证了这些失效机制。
English Abstract
This article investigates the failure mechanisms of the gallium nitride high electron mobility transistors (GaN HEMTs) under overcurrent stress. The overcurrent behavior of GaN hybrid drain-embedded gate injection transistor (HD-GIT) devices was evaluated under different stress conditions, and the primary failure modes were identified. The waveforms of the GaN devices during overcurrent events were analyzed in stages, and the physical mechanisms underlying each stage were analyzed. Numerical technology computer-aided design (TCAD) simulations were conducted to analyze the electric field distribution and the variations in electron mobility during overcurrent stress. Both thermal runaway and drain/substrate breakdown failures were investigated through simulation analysis. The results indicate that thermal runaway failure in GaN HEMTs occurs due to the accumulation of thermal stresses in the access region, which is triggered by the reduction in electron mobility and an increase in the electric field within the channel. The drain and substrate breakdown failure are mainly caused by the high vertical electric field between the drain and substrate due to hole injection from the drain p-GaN region. Furthermore, the failure mechanisms were validated through experimental tests.
S
SunView 深度解读
从阳光电源的业务视角来看,这项关于GaN HD-GIT器件过流失效机制的研究具有重要的技术价值和应用意义。GaN功率器件凭借其高开关频率、低导通损耗和高功率密度等优势,已成为光伏逆变器和储能变流器等产品实现高效率、高功率密度的关键技术路径。
该研究通过实验与TCAD仿真相结合,系统揭示了GaN HD-GIT在过流应力下的两种主要失效模式:热失控和漏极/衬底击穿。研究发现热失控源于沟道区域电子迁移率下降和电场增强导致的热应力累积,而击穿失效则与漏极p-GaN区域空穴注入引起的垂直高电场相关。这些机理性认知对阳光电源优化功率器件应用设计至关重要。
在实际应用层面,该研究成果可直接指导我司在逆变器和储能系统设计中的器件选型、热管理方案和过流保护策略。通过深入理解GaN器件的失效边界,可以更精准地设定工作裕量,在确保可靠性的前提下最大化器件性能。特别是针对电网扰动、短路故障等异常工况,基于失效机制的保护电路设计能够显著提升系统鲁棒性。
从技术成熟度评估来看,GaN器件在光伏储能领域的应用正处于快速渗透期,但长期可靠性验证仍需持续关注。建议阳光电源加强与GaN器件供应商的技术合作,建立针对性的失效分析能力和测试标准体系,同时在新一代高功率密度产品开发中前瞻性地布局GaN技术应用,巩固在新能源变流技术领域的领先优势。这项研究为我们提供了从器件物理层面提升系统可靠性的重要参考依据。