← 返回
储能系统技术 储能系统 GaN器件 ★ 4.0

观察到GaN基发光二极管中的珀尔帖冷却及电致发光冷却的巨大潜力

Observation of Peltier Cooling and Great Potential of Electroluminescent Cooling in GaN-Based Light-Emitting Diodes

作者 Yiping Zhang · Shunpeng Lu · Baiquan Liu · Huayu Gao · Yubu Zhou · Wenhui Fang
期刊 IEEE Transactions on Electron Devices
出版日期 2025年8月
技术分类 储能系统技术
技术标签 储能系统 GaN器件
相关度评分 ★★★★ 4.0 / 5.0
关键词 GaN基LED 电致发光冷却 温度效应 功率效率 热管理
语言:

中文摘要

发光二极管(LED)因其高效率、长寿命和低成本,对于未来的节能照明和显示技术至关重要。在过去几十年里,人们普遍预测电致发光(EL)冷却有助于进一步提升基于氮化镓(GaN)的LED的性能,但尚未通过实验实现。本文通过实验测量和理论建模,证实了基于GaN的热电和声子泵浦LED的可行性。令人惊讶的是,当工作点移至高效率、中电压范围时,温度升高的影响从负面变为正面。随着温度升高(从室温到473 K),功率效率最高可提升至原来的2.24倍,且在所有升高的温度下,峰值效率均优于室温下的峰值效率,此时帕尔贴效应从帕尔贴发热转变为帕尔贴制冷。在较低偏压下,声子辅助的帕尔贴制冷为载流子提供额外能量,使其克服势垒并实现复合。这些发现不仅有助于深入理解EL冷却,还为热管理以及高性能GaN基LED器件和阵列(如微LED)的设计提供了指导,相关成果可进一步推广至其他类型的LED和光电器件。

English Abstract

Light-emitting diodes (LEDs) are essential for future energy-saving lighting and display technology owing to their high efficiency, long lifetime, and low cost. To further enhance the performance of GaN-based LEDs, electroluminescent (EL) cooling has been widely predicted to be useful over the past several decades; however, it has not been experimentally achieved. Herein, thermoelectric and phonon-pumped GaN-based LEDs have been demonstrated by both experimental measurements and theoretical modeling. It is surprisingly found that the effect of increasing temperature changes from negative to positive when the operating point is moved to the high-efficiency, midvoltage range. The power efficiency exhibits a maximum 2.24-fold improvement with increasing temperature (from room temperature to 473 K), and the peak efficiency at all elevated temperatures outperforms that at room temperature, where the Peltier effect changes from Peltier heat to Peltier cooling. Under lower biases, the phonon-assisted Peltier cooling provides additional energy for carriers to overcome the potential barrier and achieve recombination. The findings not only give an insightful understanding of EL cooling but also provide guidelines on thermal management and designing high-performance GaN-based LED devices and arrays (e.g., micro-LEDs), which can be further extended to other kinds of LEDs and optoelectronic devices.
S

SunView 深度解读

从阳光电源的业务视角来看,这项GaN基LED电致发光冷却技术虽然聚焦于照明领域,但其底层的热电管理原理对我们的核心业务具有重要借鉴价值。

**技术价值分析**:该研究首次实验证实了GaN器件中的珀尔帖冷却效应,在中压高效工作区实现了温度升高反而提升器件性能的突破。这一发现对阳光电源的功率电子器件热管理具有直接启示意义。我们的光伏逆变器和储能变流器大量采用GaN功率器件,其热管理一直是制约效率和可靠性的关键瓶颈。若能将声子泵浦冷却机制应用于功率GaN器件,可能实现器件自冷却,降低对外部散热系统的依赖,提升系统功率密度和效率。

**应用前景评估**:该技术目前处于基础研究向应用转化的早期阶段。论文显示在473K高温下功率效率提升2.24倍,这为高温环境下的逆变器和储能系统运行提供了新思路。特别是在沙漠、热带等极端气候的光伏电站,若能利用此原理优化GaN功率器件的工作点设计,可显著降低冷却系统成本和能耗。

**技术挑战与机遇**:主要挑战在于LED与功率器件的工作机制差异,需要深入研究功率GaN器件中的珀尔帖效应边界条件。但这也为阳光电源提供了差异化创新机遇:可以与科研机构合作,探索将电致发光冷却理论应用于下一代碳化硅/GaN混合功率模块,开发具有自适应热管理能力的智能功率器件,进一步巩固我们在新能源电力电子技术领域的领先地位。