← 返回
基于制造商提供参数的11参数光伏模块功能模型识别
Identification of the 11-Parameter Functional Form Model for Photovoltaic Modules Using Manufacturer-Provided Ratings
| 作者 | Alejandro Angulo · Miguel Huerta · Fernando Mancilla–David |
| 期刊 | IEEE Transactions on Industrial Informatics |
| 出版日期 | 2025年3月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏性能预测 光伏模型 参数识别方法 标准测试条件 预测误差降低 |
语言:
中文摘要
鉴于光伏(PV)发电成本持续下降,且其与零售电价的竞争力不断增强,准确预测光伏性能变得愈发重要。尽管制造商通常在标准测试条件(STC)下对光伏组件进行评级,但如今,他们还通过报告低辐照条件(LIC)和标称工作电池温度(NOCT)下的组件数据来完善这些评级。最近,安古洛等人(2024 年)提出了一种改进的光伏模型,该模型能够重现光伏组件在各种大气条件下的性能。尽管安古洛等人(2024 年)充分讨论了该模型的优越性,但并未涉及如何根据制造商提供的评级来确定其特征参数。本文提出了一种基于标准测试条件、低辐照条件和标称工作电池温度评级的参数识别方法。当前的问题涉及求解一个由 11 个非线性方程组成的复杂系统,解决方法是逐步缩小搜索空间并生成调整函数。该方法在整个加利福尼亚能源委员会光伏数据库(目前包含 17710 个组件)中进行了自动测试,收敛率达到 99.8%。通过将能量预测结果与实验测量值进行比较,并结合文献中现有的先进模型,对所识别模型的质量进行了评估。结果表明,与最佳竞争模型相比,所识别的模型将预测误差降低了约 9%。
English Abstract
In light of the ongoing decline in photovoltaic (PV) generation costs and its growing competitiveness with retail electricity prices, accurately predicting PV performance is increasingly important. While manufacturers have typically rated PV modules at standard test conditions (STCs), their ratings are now being enhanced by reporting module data at low irradiance conditions (LICs) and nominal operating cell temperature (NOCT). Recently, an enhanced PV model was proposed Angulo et al., 2024, capable of reproducing the behavior of a PV module across a wide range of atmospheric conditions. Although the superiority of this model is thoroughly discussed in Angulo et al., 2024, the identification of its characterizing parameters from ratings provided by manufacturers is not addressed. This paper proposes a parameter identification methodology relying on STC, LIC, and NOCT ratings. The problem at hand involves solving a complex system of eleven nonlinear equations, and is approached by progressively reducing the search space and generating adjustment functions. The methodology is tested in an automated fashion over the entire California Energy Commission PV database, which currently contains 17 710 modules, achieving a convergence rate of 99.8%. The quality of the identified model is assessed by comparing energy predictions against experimental measurements, including state-of-the-art models available in the literature. Results indicate that the identified model reduces prediction errors by about 9% compared to the best competitive model.
S
SunView 深度解读
从阳光电源的业务视角来看,这项11参数光伏模块功能模型的研究具有重要的战略价值。该模型通过整合标准测试条件(STC)、低辐照条件(LIC)和标称工作温度(NOCT)等制造商提供的多维度数据,实现了对光伏组件在广泛大气条件下的精确性能预测,相比现有最优模型将预测误差降低约9%。
对于阳光电源的逆变器和储能系统业务,这项技术可显著提升系统级能量管理的精度。更准确的光伏发电预测能够优化逆变器的MPPT算法,提高能量转换效率;在储能系统中,精准的发电预测可改进充放电策略,延长电池寿命并提升系统经济性。特别是在大型地面电站和工商业分布式项目中,9%的预测误差降低意味着更可靠的投资回报分析和运维规划。
该技术的成熟度较高,已在包含17,710个组件的加州能源委员会数据库上实现99.8%的收敛率,证明了其工程可行性。对阳光电源而言,关键机遇在于将此模型集成到iSolarCloud等数字化平台中,为客户提供更精准的系统设计和性能评估服务,强化全生命周期解决方案的竞争力。
然而,技术挑战也不容忽视:11参数模型的复杂性要求更强的计算能力和数据处理能力;制造商数据的标准化程度和可获取性将影响模型的普适性;此外,在氢能、风储等多能互补场景中,如何将该模型与其他能源预测系统协同优化,是阳光电源需要探索的方向。建议公司建立专项研究团队,推动该技术在产品线中的快速落地应用。