← 返回
混合氢-电池系统设计与调度中的模型复杂性与优化权衡
Model complexity and optimization trade-offs in the design and scheduling of hybrid hydrogen-battery systems
| 作者 | Elena Rozzi · Alberto Grimaldi · Francesco D.Minuto · Andrea Lanzini |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 344 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 工商业光伏 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源制氢 脱碳能源系统 优化策略 电力制氢系统 氢能平准化成本 |
语言:
中文摘要
摘要 利用可再生能源生产氢气在推动能源系统向低碳化转型过程中可能发挥重要作用。本研究探讨了应用于工业级电能制氢系统的多种优化策略,包括混合整数线性规划(MILP)、一种结合粒子群优化(PSO)与MILP的混合框架(PSO-MILP),以及将PSO与基于规则的能量管理策略(EMS)相结合的方法。该分析评估了氢气生产的平准化成本(LCOH)、碳排放水平,以及若干关键因素的影响,如电池老化、电解槽效率、实时电价和氢负荷管理。结果表明,基于MILP的模型实现了中等水平的LCOH值(10.1–10.7 €/kg),但伴随较高的二氧化碳排放量(20.2–24.6 kt/y)。相比之下,采用基于规则EMS的PSO模型将碳排放降低至14.3 kt/y(减少了27–45%),但LCOH较高(11.6 €/kg)。而混合型PSO-MILP模型则在两者之间取得了平衡,其LCOH介于9.2至9.7 €/kg之间,CO₂排放量为19.7–20.3 kt/y,这得益于引入了分段仿射线性化方法来建模电解槽效率和电池退化过程。在计算耗时方面,基于MILP的模型需要超过48小时才能收敛,PSO-MILP模型的求解时间为27–35小时,而采用基于规则EMS的PSO模型仅需1.5小时即获得结果。这些发现为根据预期性能目标、资源约束条件及计算复杂度选择最合适的优化方法提供了指导,从而有助于更可持续能源系统的设计。
English Abstract
Abstract The production of hydrogen from renewable sources could play a significant role in supporting the transition toward a decarbonized energy system. This study has involved investigating optimization strategies − mixed-integer linear programming (MILP), a hybrid particle swarm optimization (PSO)-MILP framework, and PSO combined with a rule-based energy management strategy (EMS) − applied to a power-to-hydrogen system for industrial applications. The analysis evaluates the levelized cost of hydrogen production (LCOH), carbon emissions, and the impact of key factors, such as battery degradation, electrolyzer efficiency, real-time pricing, and hydrogen load management. The obtained results indicated that the MILP-based models achieved moderate LCOH values (10.1–10.7 €/kg) but incurred higher CO 2 emissions (20.2–24.6 kt/y). Instead, the PSO model, combined with the rule-based EMS, lowered emissions to 14.3 kt/y (a 27–45% reduction), albeit with a higher LCOH (11.6 €/kg). The hybrid PSO-MILP models struck a balance, achieving LCOH values of between 9.2 and 9.7 €/kg, with CO 2 emissions of 19.7–20.3 kt/y, as they benefited from the integration of piecewise affine linearization for modeling electrolyzer efficiency and battery degradation. In terms of computational efforts, the MILP-based models required more than 48 h to converge, while the PSO-MILP models completed within 27–35 h, and the PSO model with rule-based EMS achieved results in 1.5 h. These findings offer guidance that can be used to select the most suitable optimization method on the basis of the desired performance targets, resource constraints, and computational complexity, thereby contributing to the design of more sustainable energy systems.
S
SunView 深度解读
该研究对阳光电源氢储能系统集成具有重要参考价值。混合PSO-MILP优化框架可应用于ST系列储能变流器与电解槽的协同调度,实现制氢成本降低9-14%同时减排27-45%。研究中的电池退化建模和分段仿射线性化方法可优化PowerTitan储能系统在工商业光伏制氢场景的能量管理策略,缩短计算时间至27小时内。建议将规则型EMS集成到iSolarCloud平台,结合实时电价和氢负荷预测,提升光储氢一体化系统经济性和低碳性能。