← 返回
储能系统技术 储能系统 GaN器件 多物理场耦合 ★ 4.0

基于磁耦合闭环控制的GaN HEMT有源栅极驱动器以抑制关断时漏源电压过冲及电磁干扰

A GaN HEMT Active Gate Driver to Combat Turn-Off Drain-Source Voltage Overshoot and EMI Based on Magnetic Coupling Closed-Loop Control

语言:

中文摘要

与传统的硅金属 - 氧化物 - 半导体场效应晶体管(Si MOSFET)相比,氮化镓高电子迁移率晶体管(GaN HEMT)具有更快的开关速度。在GaN HEMT的关断过程中,电流的快速下降会导致严重的漏源电压过冲和电磁干扰,这限制了其可靠性和应用场景。为解决这些问题,本文提出了一种基于磁耦合闭环控制(MCCLC)的GaN HEMT有源栅极驱动器。在MCCLC中,布置在功率回路附近的线圈能够在完全电气隔离的条件下,准确地提供功率侧的电流变化率(di/dt)反馈,这比传统方法更可靠。所提出的方法不需要额外的控制信号,并且能够在关断瞬态期间分段优化栅极驱动电压。基于GS66508B的双脉冲测试(DPT)在400 V/30 A的条件下验证了MCCLC的有效性。与传统栅极驱动器(CGD)相比,漏源电压过冲降低了51.8%,电流下降的平均斜率降低了24.2%,约80 MHz处的漏极电流高频分量降低了11.2 dBμA。当电压过冲几乎相同时,与采用较大栅极驱动电阻的CGD相比,MCCLC的关断损耗降低了36.9%。

English Abstract

Compared with traditional Si mosfets, gallium nitride high electron mobility transistors (GaN HEMTs) have faster switching speeds. During the turn-off process of GaN HEMTs, the rapid decline of current causes serious drain-source voltage overshoot and electromagnetic interference, which limits the reliability and application scenarios. This article proposed a GaN HEMT active gate driver based on magnetic coupling closed-loop control (MCCLC) to address these issues. In MCCLC, coils arranged near the power loop can accurately provide di/dt feedback of the power side under completely electrically isolated conditions, which is more reliable than traditional methods. The proposed method does not require additional control signals and can segmentally optimize the gate drive voltage during turn-off transients. A double-pulse test (DPT) based on the GS66508B verifies the effectiveness of MCCLC at 400 V/30 A. Compared with CGD (conventional gate driver), the overshoot of the drain-source voltage decreased by 51.8%, the average slope of current decline was reduced by 24.2%, and the high-frequency component of the drain current at approximately 80 MHz was reduced by 11.2 dBμA. MCCLC has a 36.9% lower turn-off loss than CGD with a larger gate drive resistor when they have almost the same voltage overshoot.
S

SunView 深度解读

从阳光电源的业务视角来看,这项基于磁耦合闭环控制的GaN HEMT有源栅极驱动技术具有重要的战略价值。在光伏逆变器和储能变流器等核心产品中,GaN功率器件的应用是实现高功率密度、高效率的关键路径,但关断过程中的电压过冲和EMI问题一直制约着其在大功率场景的可靠应用。

该技术通过磁耦合方式实现di/dt的电气隔离反馈,巧妙地解决了传统电流检测方案在高速开关场景下的响应滞后和可靠性问题。实验数据显示,漏源电压过冲降低51.8%,这对提升逆变器在高直流母线电压工况下的可靠性意义重大,特别是在1500V光伏系统和高压储能应用中,可有效降低器件应力,延长系统寿命。同时,80MHz频段EMI降低11.2dB,有助于简化EMC设计,降低滤波器成本和体积。

值得关注的是,该方案在降低电压过冲的同时,关断损耗比传统大阻值驱动方案低36.9%,这为阳光电源产品在效率和可靠性之间找到了更优的平衡点。这对于追求99%以上转换效率的组串式逆变器和储能PCS产品尤为重要。

然而,技术的工程化应用仍面临挑战:磁耦合线圈的布局设计需要与功率回路紧密配合,对PCB设计和制造提出更高要求;不同功率等级下的参数优化需要大量验证;批量生产的一致性控制也是关键。建议阳光电源可先在新一代高功率密度产品中进行试点验证,逐步积累工程经验,为GaN技术的全面应用奠定基础,巩固在新能源变流技术领域的领先地位。