← 返回
储能系统技术 GaN器件 ★ 5.0

适用于超级电容器应用的纳米氧化石墨烯/二氧化锰

GO/Mn3O4)纳米复合材料的制备与表征研究

语言:

中文摘要

开发使用电化学能量存储(EES)的超高性能能源系统是21世纪工业面临的重要挑战。本文采用水热法制备了用于超级电容器应用的Mn3O4/纳米氧化石墨烯(GO)纳米复合电极材料,该方法可获得更安全、更高效且响应更快的电能系统材料。Mn3O4与氧化石墨烯电极的复合降低了其扩散特性,并增强了其电容行为。通过X射线衍射分析对材料的晶粒尺寸和晶体结构进行了测定。扫描电子显微镜(SEM)结果显示,纳米氧化石墨烯/Mn3O4半导体在太阳能电池、光电子及电子器件领域具有应用前景。采用循环伏安法在1 M KOH电解液中研究了所制备电极材料的电化学性能。所有电极材料在CV曲线中均表现出法拉第反应峰,表明所制备材料具有赝电容特性。所制备的纳米复合材料在1 A g−1电流密度下实现了139.95 F g−1的比电容。这种改善的电化学性能归因于金属氧化物纳米结构的表面特性和优异的导电网络。研究还考察了纳米氧化石墨烯/Mn3O4纳米粒子在50 Hz至5 MHz频率范围内、不同温度下的介电特性。介电常数和介电损耗在特定温度下表现出较弱的频率依赖性,但随着频率升高呈现上升趋势。电导率测量结果表明,交流电导率在不同温度和频率下的电荷电量介电特性为−1.2759 × 10–6。

English Abstract

The development of ultra-high performance energy systems that use electrochemical energy storage (EES) is a significant challenge facing the industry in the twenty-first century. The Mn 3 O 4 /Nano Graphene Oxide nanocomposite electrode material for the super capacitor application was fabricated in this article using a hydrothermal method, which results in safer, more efficient and faster electrical energy system materials. The composite of Mn 3 O 4 with Graphene Oxide electrode reduces its diffusive characteristics and enhances its capacitive behavior. X-ray diffraction analysis was performed to determine the particle size and crystal structure. SEM – Scanning electron microscope, Nano Graphene Oxide/Mn 3 O 4 semiconductor finds application in solar cells, optoelectronic and electronic devices. The electrochemical properties of the prepared electrode materials were studied by cyclic voltammetry in a 1 M KOH electrolyte solution. All the electrode materials exhibit Faradic reaction peaks in CV curves which imply the pseudo capacitive nature of the prepared materials. The prepared nanocomposite nano materials enchanted specific capacitance 139.95 Fg −1 at 1 Ag −1 . This improved electrochemical performance of attributed to the surface properties of nanostructure of metal oxide and an excellent conductive network. Dielectric characteristics of nanographene oxide/Mn 3 O 4 nanoparticles across numerous temperatures within the frequency range of 50 Hz to five MHz were investigated. The dielectric constant and dielectric loss show off minor frequency dependency at specific temperatures, yet up ward thrust as frequency increases. Electrical conductivity measurements imply that the dielectric properties of AC conductivity at different temperatures and frequencies for charge electricity quantity to − 1.2759 × 10 –6 .
S

SunView 深度解读

该GO/Mn3O4纳米复合材料超级电容器技术对阳光电源储能系统具有重要参考价值。其139.95 Fg⁻¹比电容和优异循环伏安特性可应用于ST系列PCS的直流侧缓冲电容优化,提升PowerTitan储能系统的功率响应速度和循环寿命。纳米材料的宽频介电特性与GaN器件的高频开关特性协同,可为三电平拓扑和SiC/GaN混合功率模块提供更优的无源器件方案,助力充电桩快充技术突破,并可集成至iSolarCloud平台实现电化学储能单元的智能健康管理。