← 返回
光伏发电技术 储能系统 GaN器件 工商业光伏 ★ 5.0

通过光谱椭偏仪和外量子效率监测不同有机空穴传输层窄带隙钙钛矿太阳能电池的降解行为与载流子收集损失

Monitoring degradation and carrier collection losses of narrow bandgap perovskite solar cells with different organic hole transport layers by spectroscopic ellipsometry and external quantum efficiency

语言:

中文摘要

摘要 窄带隙有机-无机铅卤钙钛矿由于具有低成本、易于合成以及高效率等优势,在光伏领域受到了广泛关注。为了实现商业化应用,选择合适的电荷传输层并评估器件的稳定性与优化至关重要。本文利用光谱椭偏仪测量技术,研究了在环境空气中老化的、分别采用聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、聚[3-(6-羧己基)噻吩-2,5-二基](P3CT)和聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)作为空穴传输层(HTLs)的封装型窄带隙锡-铅钙钛矿太阳能电池的降解行为。结果表明,在环境空气中老化10天后,钙钛矿吸光层的光学和结构特性仍保持相对稳定。基于光谱椭偏仪所确定模型进行的外量子效率(EQE)模拟,与实验测得的EQE相比,能够识别出载流子收集损失。采用P3CT作为空穴传输层的新鲜器件,在靠近前接触界面处的钙钛矿吸光层中对光生载流子的收集效率为90 ± 1%;而经过3天、5天和10天老化后的P3CT器件,在前接触界面附近的收集概率分别为88 ± 1%。新鲜及老化3天的PEDOT:PSS器件在前接触界面附近同样实现了90 ± 1%的光生载流子收集效率;而老化5天和10天的器件则降至88 ± 1%。所有使用PTAA作为空穴传输层的新鲜、3天、5天和10天老化器件,在前接触界面附近的收集效率均为82 ± 1%。相比于采用PTAA空穴传输层的器件,使用P3CT和PEDOT:PSS空穴传输层的器件表现出更高的功率转换效率,提升了2.6%至4.8%,且电子损失更少。深入理解不同空穴传输层下特别是在前后接触区域附近的载流子收集损失变化规律,对于优化钙钛矿太阳能电池性能具有重要意义。

English Abstract

Abstract Narrow bandgap organic–inorganic lead halide-based perovskites have attracted tremendous attention in photovoltaics due to their advantages of low cost, easy synthesis and high efficiency. Selection of suitable charge transport layers and evaluation of device stability and optimization is necessary for commercialization. Degradation of encapsulated narrow bandgap tin–lead perovskite solar cells made with poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS), poly[3-(6-carboxyhexyl)thiophene-2,5-diyl] (P3CT), and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) hole transport layers (HTLs) in ambient air is investigated using spectroscopic ellipsometry measurements. Optical and structural properties of the perovskite absorber layer remain relatively stable after 10 days of aging in ambient air. External quantum efficiency (EQE) simulations based on spectroscopic ellipsometry determined models identify carrier collection losses when compared with experimental EQE. A fresh device with P3CT HTL has 90 ± 1 % collection of photogenerated carriers in the perovskite absorber near the front contact interface. 3-, 5-, and 10-days aged devices with P3CT have 88 ± 1 % collection probability near the front contact interface. Fresh and 3-days aged devices with PEDOT:PSS HTL have 90 ± 1 % collection of photogenerated carriers in the perovskite absorber near the front contact interface. 5- and 10-days aged devices have 88 ± 1 % near the front contact interface. Fresh, 3-, 5-, and 10-days aged devices with PTAA HTL have 82 ± 1 % collection near the front contact interface. Devices with P3CT and PEDOT:PSS HTLs have 2.6 to 4.8 % higher power conversion efficiency and reduced electronic losses compared to a device with a PTAA HTL. Understanding how carrier collection losses, particularly near the front and back contacts, varies with different HTLs is necessary for optimizing perovskite solar cell performance.
S

SunView 深度解读

该窄带隙钙钛矿电池载流子收集损耗研究对阳光电源SG系列光伏逆变器MPPT优化具有重要参考价值。研究揭示P3CT和PEDOT:PSS空穴传输层可实现90%载流子收集效率,比PTAA高8%,转换效率提升2.6-4.8%。这为阳光电源开发高效率光伏组件匹配算法、优化前端接触界面损耗监测提供理论依据,可应用于iSolarCloud平台的组件衰减预测模型,提升1500V系统长期发电效率和智能运维能力。