← 返回
光伏发电技术 SiC器件 ★ 5.0

采用历元依赖自适应损失加权与数据同化的光伏发电功率预测模型

Photovoltaic power forecasting model employing epoch-dependent adaptive loss weighting and data assimilation

语言:

中文摘要

摘要 准确预测光伏(PV)发电功率对于优化能源管理系统和提升电网稳定性至关重要。本研究提出了一种物理约束的光伏发电功率预测网络(PC-P3reNet),该网络是一种双层深度学习框架,专为局部环境数据保持一致而光伏系统特性变化的场景优化设计。该框架集成了一种基于物理原理的模型,用于计算理论上的光伏发电输出,并通过Huber损失函数将其与实际测量值进行比较。PC-P3reNet的一个独特特征是其自适应损失加权机制,能够在不同的训练历元中动态调整理论数据与实测数据之间的平衡。这一机制使得模型在初始阶段可借助理论知识进行学习,随后基于实测数据进一步优化预测结果,从而有效捕捉功率输出的趋势与波动性。本文利用澳大利亚四个光伏电站的数据对模型性能进行了评估。结果表明,该模型在多步预测任务中相比其他方法表现出更优的性能,在18号电站实现了最低0.1837的平均绝对误差(MAE)。相较于基准方法,所提模型的均方误差(MSE)平均改善程度高出4.68%。

English Abstract

Abstract Accurate prediction of photovoltaic (PV) power output is crucial for optimizing energy management systems and enhancing grid stability. This study presents the Physics Constrained PV Power Prediction Network (PC-P 3 reNet), a dual-layer deep learning framework optimized for scenarios where local environmental data remain consistent while PV system characteristics vary. The framework integrates a physics-based model to calculate theoretical PV power outputs, which are then compared with actual measurements using the Huber Loss function. A unique feature of PC-P 3 reNet is its adaptive loss weighting, which dynamically adjusts the balance between theoretical and measured data across different training epochs. This feature allows the model to initially leverage theoretical insights for learning and later refine its predictions based on measured data, effectively capturing both trends and variability. The model’s performance was evaluated using data from four PV stations in Australia. The model demonstrated superior performance in multi-step forecasting compared to other methods. It achieved a minimum mean absolute error (MAE) of 0.1837 at the No. 18 power station. The mean square error (MSE) improvement was 4.68% higher on average for the proposed model than the baseline method.
S

SunView 深度解读

该物理约束深度学习预测模型对阳光电源iSolarCloud智慧运维平台具有重要应用价值。其自适应损失加权机制可优化SG系列光伏逆变器的MPPT控制策略,通过融合理论模型与实测数据提升多步预测精度(MAE达0.1837)。该技术可增强ST系列储能变流器的充放电决策能力,改善电网稳定性,并为PowerTitan等大型储能系统提供更精准的能量管理优化方案,显著提升新能源电站的预测性维护水平和经济效益。