← 返回
光伏发电技术 SiC器件 ★ 5.0

一种基于卫星的结合云透射率预报与物理晴空辐射模型的短期

10分钟−4小时)太阳辐射预测新方法

语言:

中文摘要

摘要 短期太阳辐射预测对于太阳能光伏发电并网以及电网调度与优化至关重要。提高依赖人工智能的基于卫星的短期预测方法的可解释性是当前的研究重点。在本研究中,我们提出了一种将基于卫星的云透射率预测与物理晴空辐射预测相结合的新型短期太阳辐射预测方法。本研究的创新之处在于其建立在大气物理原理基础之上,具体体现在对云透射率的预测以及对阴天和晴天状态的区分。云透射率的预测基于Himawari-8观测数据,采用广泛使用且成熟的卷积神经网络(CNN)和长短期记忆(LSTM)网络实现;而晴空辐射预测则可通过晴空辐射模型或基于数值天气预报(NWP)的方法完成。与其他基于卫星的基准预测框架相比,我们所构建的框架在短期太阳辐射预测精度上有所提升,在116个站点上的平均均方根误差约为62 W/m²,当预测时域为10分钟时,相对均方根误差平均约为14.36%。当预测时域延长至20分钟到4小时之间时,相应的平均均方根误差从72.16 W/m²增加至159.75 W/m²,相对均方根误差则从16.71%上升至37%。本研究能够预测太阳辐射分布图,有助于太阳能光伏发电的灵活调控。

English Abstract

Abstract Short-term forecasting of solar radiation is crucial for grid integration of solar photovoltaic (PV) power and for grid scheduling and optimization. Enhancing the interpretability of satellite-based short-term forecasts that rely on artificial intelligence is a research focus. In this study, we presented a novel approach to forecast short-term solar radiation by combining satellite-based cloud transmittance forecast and physical clear-sky radiation forecast. The innovation of this study lies in its foundation on atmospheric physics principles, specifically forecasting cloud transmittance and distinguishing between cloudy and clear skies. The cloud transmittance prediction was conducted based on Himawari-8 observations using widely adopted and well-known convolutional neural network (CNN) and long short-term memory (LSTM) networks, while the clear-sky radiation forecast can be conducted with clear-sky radiation model or prediction based on numerical weather prediction (NWP). Compared to other satellite-based baseline forecasting frameworks, the accuracy of our developed framework for short-term forecasting of solar radiation is improved, with an average root mean square error of about 62 W/m 2 over 116 sites and an average relative root mean square error of about 14.36 % with a forecast horizon of 10 min. When the forecast horizon was increased to ranging from 20 min to 4 h, the corresponding average root mean square error increased from 72.16 W/m 2 to 159.75 W/m 2 , and the relative root mean square error increased from 16.71 % to 37 %. This work can forecast solar radiation maps and assist in the flexible regulation of solar PV generation.
S

SunView 深度解读

该卫星短期辐照预测技术对阳光电源储能与光伏系统具有重要价值。通过10分钟至4小时精准预测(RMSE 62-160 W/m²),可优化ST系列储能变流器的充放电策略和PowerTitan系统的能量管理。结合iSolarCloud平台,能提升SG系列逆变器的MPPT算法预判能力,实现电网友好型并网控制。云透射率物理建模思路可启发GFM/VSG控制策略中的功率预测模块开发,增强新能源电站调度灵活性,降低弃光率,提升系统经济性。