← 返回
基于知识与数据驱动融合Koopman方法的双馈感应发电机风电场频率支撑能力在线评估
Online assessment of frequency support capability of the DFIG-based wind farm using a knowledge and data-driven fusion Koopman method
| 作者 | Yimin Ruan · Wei Yao · Qihang Zong · Hongyu Zhou · Wei Gan · Xinhao Zhang · Shaolin Li · Jinyu Wen |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An indicator system for quantifying frequency support capability of wind farm is proposed. |
语言:
中文摘要
摘要 随着可再生能源在电力系统中渗透率的不断提高,系统的频率稳定性有所下降。因此,风电场(WFs)等可再生能源电站必须具备足够的频率支撑能力。为了最大化风电场的频率支撑能力,准确确定其频率支撑能力边界(FSCB)至关重要。由于风资源分布不均以及风电机组运行状态复杂,精确评估风电场FSCB具有挑战性。针对这一问题,本文提出一种基于知识与数据驱动融合的Koopman方法,用于评估基于双馈感应发电机(DFIG)的风电场的FSCB。本文分析了FSCB的特性,并构建了一个多维指标体系,从理论和实际两个层面精确定量刻画FSCB。为准确计算所定义的指标,提出了一种基于Koopman-混合整数线性规划(MILP)的知识与数据驱动融合方法。该方法融合了风电场频率调节结构的知识,构建Koopman字典函数,从而利用历史频率调节数据训练得到评估对象的全局线性化Koopman算子,并结合实时数据实现在线评估。在包含DFIG型风电场的四机两区域电力系统上开展了案例研究。结果表明,所提出的Koopman-MILP方法评估误差在2%以内,评估速度比传统非线性方法快近10倍。与未融合知识构建的字典函数相比,本文提出的字典函数使评估精度提高了近5倍。此外,该方法还揭示了频率调节策略、安全运行约束以及风资源对FSCB的影响。仿真结果验证了所提指标体系的合理性、评估方法的准确性以及评估结果在不同运行工况下的实用性。
English Abstract
Abstract The increasing integration of renewable energy in power systems causes a decrease in the frequency stability of the system. Consequently, renewable energy stations, such as wind farms (WFs), must possess adequate frequency support capabilities. To maximize the frequency support capability of the WF, it is crucial to determine the frequency support capability boundaries (FSCB) of the WF. Due to the uneven distribution of wind resources and complex operating states of wind turbines, accurate evaluation of the FSCB of the WF is challenging. To address this issue, this paper proposes a knowledge and data-driven fusion Koopman method to assess the FSCB of the doubly fed induction generator (DFIG)-based WF. The characteristics of FSCB are analyzed and a multi-dimensional indicator system is defined to precisely quantify FSCB at both theoretical and practical levels. To accurately calculate the defined indicators, a knowledge and data-driven fusion method based on Koopman-mixed integer linear programming (MILP) is proposed. The knowledge of WF frequency regulation structures is integrated to construct Koopman dictionary functions. This allows the training of historical frequency regulation data to obtain the global linearized Koopman operator for the assessment object. Subsequently, it facilitates online assessment results using real-time data. Case studies are undertaken on the four-machine two-area power system including a DFIG-based WF. The assessment error of the proposed Koopman-MILP method is within 2%, with an assessment speed nearly 10 times faster than conventional nonlinear methods. The proposed dictionary function, compared to the one without integrated knowledge, improves assessment accuracy by nearly 5 times. Additionally, it reveals the impact of frequency regulation strategies, safety operation constraints, and wind resources on FSCB. Simulation results validate the rationality of the proposed indicators, the accuracy of the assessment method, and the practicality of the assessment outcomes under various operating conditions.
S
SunView 深度解读
该Koopman融合方法对阳光电源风储协同系统具有重要价值。可应用于ST系列储能变流器与风电场的协调调频控制,通过在线评估风电场频率支撑能力边界,动态优化PowerTitan储能系统的调频响应策略。该方法评估误差小于2%且速度提升10倍,可集成至iSolarCloud平台实现预测性调频资源管理。结合VSG虚拟同步机技术,能精准量化风储联合调频能力,为GFM构网型储能系统提供实时决策依据,提升新能源电站频率支撑可靠性与经济性。