找到 3 条结果 · IEEE Transactions on Sustainable Energy
一种端到端集成学习方法以提升风电功率预测
An End-to-End Ensemble Learning Approach for Enhancing Wind Power Forecasting
Yun Wang · Houhua Xu · Yaohui Huang · Fan Zhang 等6人 · IEEE Transactions on Sustainable Energy · 2025年6月
精确的风电功率预测对电网稳定性和可靠高效的电力供应至关重要。针对现有集成模型多阶段建模易导致误差累积、训练低效及基学习器数量有限造成预测多样性不足的问题,本文提出MG-DS模型。该模型基于Dempster-Shafer证据理论,将基模型学习与集成学习统一于端到端框架中,包含全MLP非线性特征提取、GRU与交叉注意力基预测生成,以及基于DS理论的自集成模块,并引入“放大镜”机制增强预测多样性。此外,提出DS自集成(DSSE)插件以融合RNN与非RNN基预测器。在五个风电数据集上的实验验证了MG-D...
解读: 该端到端集成学习预测方法对阳光电源储能与风电产品线具有重要应用价值。MG-DS模型的高精度功率预测可直接应用于ST系列储能变流器的调度优化和PowerTitan储能系统的容量规划。其'放大镜'机制和DS自集成技术可提升iSolarCloud平台对风电场功率预测的准确性,有助于优化储能调度策略。该技术...
基于深度强化学习的移动式风力发电机分配以增强配电系统韧性
Deep Reinforcement Learning-Based Allocation of Mobile Wind Turbines for Enhancing Resilience in Power Distribution Systems
Ruotan Zhang · Jinshun Su · Payman Dehghanian · Mohannad Alhazmi 等5人 · IEEE Transactions on Sustainable Energy · 2025年6月
风能资源的广泛应用在应对气候变化中展现出显著优势。移动式风力发电机(MWT)可通过运输系统灵活部署,作为应急电源参与配电系统(PDS)灾后恢复,提升系统韧性。本文提出一种基于多智能体深度强化学习(MADRL)的MWT调度框架,采用深度Q网络(DQL)与双深度Q网络(DDQL)进行训练与对比,并引入动作限制机制以抑制风电波动影响。在锡乌福尔斯交通系统与四个IEEE 33节点配电系统耦合的案例中验证了该方法在提升灾后服务恢复能力方面的有效性。
解读: 该研究的MWT调度与深度强化学习方法对阳光电源储能产品线具有重要参考价值。首先,MADRL框架可优化ST系列储能变流器的调度策略,提升PowerTitan系统在极端天气下的应急响应能力。其次,动作限制机制的设计思路可用于改进储能PCS的功率波动抑制算法。研究中的分布式协同控制方案也可集成到iSola...
基于GPT的超短期分布式光伏发电功率预测方法
An Ultra-Short-Term Distributed Photovoltaic Power Forecasting Method Based on GPT
Hengqi Zhang · Jie Yang · Siyuan Fan · Hua Geng 等5人 · IEEE Transactions on Sustainable Energy · 2025年4月
随着大量分布式光伏电站并网,提升发电功率预测精度对电力系统安全经济运行具有重要意义。针对现有方法在数据稀缺与随机波动方面的挑战,本文提出一种基于生成式预训练Transformer(GPT)的超短期分布式光伏功率预测方法。通过生成多空间分辨率的虚拟光伏功率数据,预训练Transformer模型,并利用少量实测数据进行微调。注意力机制通过预训练学习历史数据中的相关性,微调实现新电站的轻量化部署与高精度预测。实验结果表明,所提方法在仅1个月实测数据下,相比LSTM、线性模型和Transformer模型...
解读: 该基于GPT的超短期光伏功率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。可直接集成至SG系列光伏逆变器的智能诊断系统,通过少量实测数据实现新建电站的快速部署与高精度预测,相比传统LSTM方法RMSE降低37.22%。该技术可优化PowerTitan储能系统的充放电策略,提升...