← 返回
光伏发电技术 ★ 5.0

基于GPT的超短期分布式光伏发电功率预测方法

An Ultra-Short-Term Distributed Photovoltaic Power Forecasting Method Based on GPT

作者 Hengqi Zhang · Jie Yang · Siyuan Fan · Hua Geng · Changkun Shao
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年4月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分布式光伏 功率预测 GPT 数据稀缺 精准预测
语言:

中文摘要

随着大量分布式光伏电站并网,提升发电功率预测精度对电力系统安全经济运行具有重要意义。针对现有方法在数据稀缺与随机波动方面的挑战,本文提出一种基于生成式预训练Transformer(GPT)的超短期分布式光伏功率预测方法。通过生成多空间分辨率的虚拟光伏功率数据,预训练Transformer模型,并利用少量实测数据进行微调。注意力机制通过预训练学习历史数据中的相关性,微调实现新电站的轻量化部署与高精度预测。实验结果表明,所提方法在仅1个月实测数据下,相比LSTM、线性模型和Transformer模型,平均RMSE分别降低37.22%、32.92%和10.87%。

English Abstract

With a lot of distributed photovoltaic (PV) stations connected to the grid, improving the accuracy of power prediction is helpful to safe and economical operation of the power system. However, most existing methods face challenges in dealing with data scarcity and random fluctuations. This paper proposes an ultra-short-term distributed PV power forecasting method based on Generative Pre-trained Transformer (GPT). Firstly, virtual distributed PV power data is generated with different spatial resolutions. Next, the generated data is used to pre-train a Transformer-based model for predicting PV power from 15 minutes to 4 hours. Finally, the model is fine-tuned on real PV stations with a small data volume. The attention mechanism can learn correlations from lots of historical power data by pre-training. Fine-tuning can realize lightweight deployment and accurate prediction on newly built PV stations, effectively dealing with data scarcity. Models with 12.63M and 103M parameters are pre-trained using virtual data, respectively. The experimental results on datasets from 3 locations show that when there is 1 mo real data, the average RMSE decreases by 37.22%, 32.92% and 10.87% compared with the LSTM, linear model, and Transformer-based model, respectively.
S

SunView 深度解读

该基于GPT的超短期光伏功率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。可直接集成至SG系列光伏逆变器的智能诊断系统,通过少量实测数据实现新建电站的快速部署与高精度预测,相比传统LSTM方法RMSE降低37.22%。该技术可优化PowerTitan储能系统的充放电策略,提升能量管理精度;增强分布式光伏电站的并网友好性,支持构网型GFM控制的功率预测需求。注意力机制对历史数据相关性的学习能力,可为阳光电源预测性维护系统提供轻量化部署方案,降低数据采集成本,加速新电站接入速度,提升整体运维效率。