找到 4 条结果 · IEEE Access

排序:
储能系统技术 储能系统 可靠性分析 故障诊断 ★ 5.0

梯度提升特征选择用于串补输电线路集成故障诊断

Gradient Boosting Feature Selection for Integrated Fault Diagnosis in Series-Compensated Transmission Lines

Rab Nawaz · Abdul Wadood · Khawaja Khalid Mehmood · Syed Basit Ali Bukhari 等6人 · IEEE Access · 2025年1月

串补输电线路是现代电网的组成部分,增强系统可靠性和稳定性。然而,它们引入电压反转、谐波失真和非线性动态等挑战,使当代电力系统故障诊断复杂化。本研究引入创新方法分析故障信号波形,利用互联网和传感器技术进步提供时间序列形式的大量电压和电流数据。通过优化从特征提取到模型学习的每个数据处理阶段,所提系统有效解决故障检测、分类和定位作为多分类问题。特征提取与高效梯度提升特征选择集成确保高准确度、速度和计算效率,优于需要大量预处理的技术。该方法使用四种集成分类器实施:自适应提升AB、轻量梯度提升机LGBM、...

解读: 该故障诊断技术对阳光电源光伏储能系统智能运维具有重要价值。阳光大型地面电站和集中式储能站需要快速准确的故障检测和定位。该研究的梯度提升特征选择和多分类模型可集成到阳光iSolarCloud平台,实现电站级故障智能诊断。在输电线路并网场景下,阳光储能系统需要识别电网侧故障并快速响应。该RF和XGB算法...

储能系统技术 储能系统 深度学习 ★ 5.0

基于物联网多传感器融合的关键特征与混合迁移学习活动识别

IoT-Based Multisensors Fusion for Activity Recognition via Key Features and Hybrid Transfer Learning

Ahmad Jalal · Danyal Khan · Touseef Sadiq · Moneerah Alotaibi 等6人 · IEEE Access · 2025年1月

人类活动识别HAR在医疗保健、智能家居和人机交互等领域备受关注。本文提出使用RGB视频和IMU传感器数据的综合HAR系统。系统采用多阶段处理流程包括预处理、分割、特征提取和分类,实现高精度活动识别。预处理阶段从视频提取帧,IMU数据去噪。分割阶段对视频帧应用朴素贝叶斯分割,对传感器数据应用汉明窗。关键特征提取技术包括图像数据的ORB、MSER、DFT和KAZE,传感器数据的LPCC、PSD、AR系数和熵。使用线性判别分析LDA进行特征融合创建统一特征集,然后使用ResNet50分类识别如使用智能...

解读: 该多传感器融合识别技术可应用于阳光电源智能运维场景。阳光光伏电站和储能站需要工作人员行为识别和安全监控。该HAR系统的视频和传感器融合方法可部署在阳光电站巡检系统,识别运维人员操作行为,确保作业安全规范。结合阳光iSolarCloud平台的视频分析功能,该技术可实现电站人员活动智能监控,检测异常行为...

储能系统技术 储能系统 ★ 5.0

基于自适应神经模糊分类的高精度动作识别:先进生物信号与RGB融合技术

Advanced Biosignal-RGB Fusion With Adaptive Neurofuzzy Classification for High-Precision Action Recognition

Iqra Aijaz Abro · Haifa F. Alhasson · Shuaa S. Alharbi · Mohammed Alatiyyah 等6人 · IEEE Access · 2025年1月

在使用多传感器数据进行动作识别的领域中,生物信号与RGB模态的融合为提升动作分类系统精度提供了新途径。本文提出一种自适应神经模糊分类框架,融合肌电信号、加速度计数据和视觉信息,通过模糊逻辑优化多模态数据的特征融合。

解读: 该多传感器融合技术可应用于阳光电源储能系统的人机交互和安全监控。通过融合视觉和生物信号数据,实现储能电站运维人员的行为识别和异常动作检测,提升工业现场的安全管理水平,为智能运维系统提供人机协同支持。...

储能系统技术 储能系统 深度学习 ★ 4.0

基于改进GMM分割和DenseNet的遥感识别新方法

A Novel Remote Sensing Recognition Using Modified GMM Segmentation and DenseNet

Muhammad Waqas Ahmed · Moneerah Alotaibi · Sultan Refa Alotaibi · Dina Abdulaziz Alhammadi 等6人 · IEEE Access · 2025年1月

航空图像准确分类是遥感关键任务,应用范围从土地覆盖制图、城市规划到灾害响应和环境监测。然而,标记数据有限、固有数据复杂性和高计算需求等挑战常阻碍传统方法性能。为应对这些挑战,我们提出创新框架,结合先进分割技术、多样化特征提取方法、优化算法和深度学习。我们方法始于新颖图割优化模糊GMM分割GC-GMM,确保精确目标识别和边界描绘。采用方位角平均特征提取、Haar小波变换和最大稳定极值区域MSER捕获涵盖纹理、频率和形状信息的丰富特征集。使用粒子群优化PSO融合和精炼这些特征,创建鲁棒信息表示。利用...

解读: 该遥感识别技术对阳光电源光伏电站监测和管理具有重要应用。阳光管理全球数百GW光伏电站,需要高效的遥感图像分析能力。该研究的分割和特征提取方法可应用于阳光iSolarCloud平台的卫星图像分析,自动识别光伏组件、阴影遮挡和环境变化。在大型地面电站中,该DenseNet分类器可实现电站区域规划、土地利...