← 返回
梯度提升特征选择用于串补输电线路集成故障诊断
Gradient Boosting Feature Selection for Integrated Fault Diagnosis in Series-Compensated Transmission Lines
| 作者 | Rab Nawaz · Abdul Wadood · Khawaja Khalid Mehmood · Syed Basit Ali Bukhari · Hani Albalawi · Aadel Mohammed Alatwi |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 可靠性分析 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 串联补偿输电线路 故障诊断 特征提取 梯度提升分类器 准确率 |
语言:
中文摘要
串补输电线路是现代电网的组成部分,增强系统可靠性和稳定性。然而,它们引入电压反转、谐波失真和非线性动态等挑战,使当代电力系统故障诊断复杂化。本研究引入创新方法分析故障信号波形,利用互联网和传感器技术进步提供时间序列形式的大量电压和电流数据。通过优化从特征提取到模型学习的每个数据处理阶段,所提系统有效解决故障检测、分类和定位作为多分类问题。特征提取与高效梯度提升特征选择集成确保高准确度、速度和计算效率,优于需要大量预处理的技术。该方法使用四种集成分类器实施:自适应提升AB、轻量梯度提升机LGBM、随机森林RF和极端梯度提升XGB,在动态条件下对不同复杂度和系统配置的各种标准模型严格评估。RF在二分类中达到最高准确率99.94%,XGB计算时间最快0.2790秒。RF在二元故障分类达到完美精度100%,XGB在三类故障定位达到完美精度。十类多分类中LGBM在10dB噪声下显示最高噪声免疫力99%准确率。
English Abstract
Series-compensated power transmission lines are integral to modern power grids and enhance the system reliability and stability. However, they introduce challenges such as voltage inversion, harmonic distortion, and nonlinear dynamics, complicating fault diagnosis in contemporary power systems. This study introduces an innovative method to analyze the waveforms of fault signals, utilizing advances in Internet and sensor technologies that provide extensive voltage and current data in a time-series form. By optimizing each phase of data processing from feature extraction to model learning, the proposed system effectively addresses fault detection, classification, and localization as a multi-classification problem. The integration of feature extraction with efficient gradient-boosting feature selection ensures high accuracy, speed, and computational efficiency, thus outperforming techniques that require heavy preprocessing. The methodology is implemented using four ensemble classifiers: Adaptive Boosting (AB), Light Gradient Boosting Machine (LGBM), Random Forest (RF), and Extreme Gradient Boosting (XGB), and is rigorously evaluated on various standard models of differing complexity and system configurations under dynamic conditions. This approach achieves high accuracy, adaptability, and robustness, overcoming practical constraints, such as high noise immunity, resource efficiency, and scalability for real-world applications. The results showed that RF achieved the highest accuracy of 99.94%, whereas XGB exhibited the fastest computational time of 0.2790 s for binary classification. RF achieved perfect accuracy (100%) for binary fault classification, whereas XGB achieved perfect accuracy for tri-class fault localization. RF achieved 99.89% accuracy in the five-class classification. LGBM demonstrates the highest noise immunity with 99% accuracy at 10 dB in ten-class multi-classification, whereas RF maintains 94.52% accuracy under extreme noise conditions (5 dB) and unforeseen signal distortions. These findings underscore the effectiveness of the proposed method, particularly the use of gradient boosting classifiers, and validate its potential for practical applications in modern power systems.
S
SunView 深度解读
该故障诊断技术对阳光电源光伏储能系统智能运维具有重要价值。阳光大型地面电站和集中式储能站需要快速准确的故障检测和定位。该研究的梯度提升特征选择和多分类模型可集成到阳光iSolarCloud平台,实现电站级故障智能诊断。在输电线路并网场景下,阳光储能系统需要识别电网侧故障并快速响应。该RF和XGB算法的高准确率和快速响应能力可应用于阳光ST储能变流器的保护系统,实现毫秒级故障检测和定位。结合阳光设备的传感器数据和云端大数据分析,该技术可提升故障诊断准确率至99%以上,降低误报率,减少停机时间,提高电站可用率和经济效益。