找到 4 条结果 · Applied Energy
基于卫星图像纹理特征与迁移学习的区域光伏功率预测优化高效方法
An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning
Yang Xi · Jianyong Zheng · Fei Mei · Gareth Taylor 等5人 · Applied Energy · 2025年1月 · Vol.385
准确高效的区域光伏发电功率预测对于提升光伏电力供应的稳定性并扩大其市场份额至关重要。近年来的研究进展已将卫星与地面观测数据的特征相结合,基于混合神经网络的模型展现出优异的预测性能。然而,仍存在若干挑战:直接从卫星图像中提取的空间特征往往缺乏细节,且大多数现有预测方法需要大量电力数据样本。因此,在云量变化速率较高的情况下,预测精度易受相位滞后的影响,同时由于区域光伏装置数量庞大且分布分散,计算负担也显著增加。为解决上述问题,本研究提出一种创新的时空特征,该特征将从卫星图像重构的纹理特征(TFs)与...
解读: 该区域光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过卫星图像纹理特征与迁移学习结合,可显著提升SG系列逆变器集群的功率预测精度(RMSE提升72%)并降低相位滞后,特别适用于分布式光伏电站管理。该算法计算效率提升10倍,可与ST储能系统协同优化充放电策略,减少云层...
基于物理的锂离子电池电化学模型参数辨识及其双种群优化方法
Physics-based parameter identification of an electrochemical model for lithium-ion batteries with two-population optimization method
Aina Tian · Kailang Dong · Xiao-Guang Yang · Yuqin Wang 等7人 · Applied Energy · 2025年1月 · Vol.378
摘要 伪二维(P2D)模型因其基于物理原理的高精度,在电池管理系统中展现出日益广阔的应用前景。然而,由于难以准确辨识多个参数,且常出现求解不收敛的问题,限制了其实际应用效果。传统的数据驱动型P2D模型参数辨识方法虽然先进,但通常需要大量数据,且缺乏必要的物理机理洞察,容易导致过拟合。为应对上述挑战,本研究首先开展参数敏感性分析,以确定各类参数辨识的最佳条件;进而提出一种双种群多目标优化算法,高效地筛选出非劣解参数集。该算法的独特之处在于引入非收敛种群,以增强狼群种群的更新过程,从而提升参数辨识的...
解读: 该P2D模型参数辨识技术对阳光电源储能系统具有重要价值。通过双种群优化算法精确识别23个电池参数,可显著提升ST系列PCS和PowerTitan储能系统的BMS精度,动态工况下电压预测误差控制在9mV以内。该物理驱动方法可增强iSolarCloud平台的电池健康状态评估和预测性维护能力,避免纯数据驱...
建筑一体化光伏系统自主设计框架
Autonomous design framework for deploying building integrated photovoltaics
Qingxiang Li · Guidong Yang · Chenhang Bian · Lingege Long 等11人 · Applied Energy · 2025年1月 · Vol.377
摘要 钙钛矿太阳能电池技术的进步为建筑一体化光伏系统(BIPV)的广泛应用提供了广阔的前景。寻找一种高效且准确的方法对于提供部署策略以支持决策至关重要。本研究开发了一种用于BIPV的自主决策设计框架,涵盖数据采集、三维建模和部署策略制定。在数据采集方面,构建了一个开源的无人机平台,用于执行一种创新的“先探索后利用”算法,以生成观测视角并进行路径规划。随后,采用一种独特的基于深度学习的多视角立体视觉网络生成建筑物的点云模型,并将其转换为多边形表面模型。此外,开发了一种新型Grasshopper插件...
解读: 该BIPV自主设计框架对阳光电源SG系列光伏逆变器及智能运维平台具有重要应用价值。研究提出的建筑光伏部署优化方法可与我司iSolarCloud平台深度融合,通过3D建模和全生命周期成本分析,为城市建筑光伏系统提供精准的容量配置和MPPT优化策略。该框架可延伸至光储充一体化场景,结合ST系列储能变流器...
基于混合深度学习的屋顶光伏供给与农宅负荷不匹配分析:数据降维与可解释负荷模式挖掘
Mismatch analysis of rooftop photovoltaics supply and farmhouse load: Data dimensionality reduction and explicable load pattern mining via hybrid deep learning
Ding Gao · Yuan Zhi · Xing Rong · Xudong Yang · Applied Energy · 2025年1月 · Vol.377
摘要 建立以屋顶光伏(PV)为基础的新型电力系统有助于推动中国农村地区的能源转型。光伏供给与农村家庭用电需求之间不匹配的研究,对光伏微电网系统的广泛推广至关重要。目前,农村地区典型负荷模式(TLPs)缺乏准确的特征刻画方法,且现有的不匹配评估方法未充分考虑光伏弃电问题。因此,本研究提出一种基于混合深度学习的分析框架,用于量化全天时段内光伏发电与典型负荷模式之间的短期不匹配程度,并将其应用于真实农村地区数据集。本研究采用变分自编码器(VAE)模型对高分辨率负荷数据进行降维与特征提取,并与传统方法进...
解读: 该研究对阳光电源户用光伏微电网解决方案具有重要价值。VAE深度学习模型可集成至iSolarCloud平台,实现农村负荷模式精准识别与PV出力失配预测。研究揭示的三类典型负荷曲线可优化SG系列逆变器的MPPT策略,结合ST系列储能PCS动态调节充放电功率,降低弃光率。基尼系数量化方法为PowerTit...