找到 4 条结果 · Applied Energy
基于外生变量与调优形式时间序列提示增强的大型时间序列模型的风电功率预测
Wind power prediction using foundation large time series models enhanced by time series prompt in exogenous and tuning forms
Yuwei Fan · Tao Song · Chenlong Feng · Chao Liu 等5人 · Applied Energy · 2025年1月 · Vol.400
摘要 大型时间序列模型(Large Time Series Models, LTSMs)在能源领域具有广泛的应用前景,其中时间序列分析在电力预测等多种实际下游任务中发挥着重要作用。然而,对外生变量的忽视以及全量微调方法的局限性,制约了这些模型在下游任务中的适应能力。本文提出时间序列提示(Time Series Prompt, TSP)的概念,构建了一种基于TSP的方案,将外生变量融入基础LTSM,并结合参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)方法...
解读: 该大型时序模型与时序提示技术对阳光电源风储系统具有重要价值。通过外生变量(风速预测)嵌入提示机制,可显著提升风电功率预测精度(MSE降低50%),结合参数高效微调进一步优化50%。该方法可直接应用于ST系列储能PCS的充放电策略优化,提升风储协同效率;集成至iSolarCloud平台实现智能预测性运...
基于分布鲁棒机会约束的钢铁工业微电网在配电市场中含储能的能量管理
Distributionally robust chance-constrained energy management of steel industrial microgrid with energy storage in distribution market
Linbo Fu · Houhe Chen · Rufeng Zhang · Tao Jiang 等6人 · Applied Energy · 2025年1月 · Vol.400
摘要 高耗能钢铁工业微电网(SIMG)中分布式光伏出力的不确定性可能影响SIMG的能量管理策略,甚至增加其在配电市场中的运行风险。针对SIMG中分布式光伏出力的不确定性,本文提出了一种基于分布鲁棒机会约束(DRCC)的配电市场环境下SIMG能量管理方法,以优化钢铁工业生产过程。首先,根据SIMG中能量流与信息流的形式,提出了参与配电市场出清的交易模式;在SIMG能量管理中引入了钢铁生产过程的时间序列模型,并进一步构建了配电市场环境下的双层能量优化管理模型。随后,采用DRCC方法处理分布式光伏出力...
解读: 该分布鲁棒机会约束优化方法对阳光电源钢铁工业微网解决方案具有重要价值。针对高载能工业场景,可结合ST系列储能变流器与PowerTitan系统,通过CVaR风险控制策略优化光储协同调度。建议在iSolarCloud平台集成该分布鲁棒算法,处理工商业光伏出力不确定性,提升SG系列逆变器在电力市场环境下的...
基于增量容量曲线与S变换的电动汽车电池组健康状态估计
State-of-health estimation for EV battery packs via incremental capacity curves and S-transform
Siyi Tao · Jiangong Zhu · Yuan Lic · Siyang Chen 等10人 · Applied Energy · 2025年1月 · Vol.397
准确估计电动汽车(EV)中电池的健康状态(SOH)对于缓解用户的续航焦虑具有重要作用。然而,云端电池管理系统(BMS)数据质量欠佳,加之电池正极材料的多样性,为开发适用于实际EV应用的通用SOH估计方法带来了显著挑战。本研究提出了一种基于充电过程的可推广特征提取框架。该方法从增量容量(IC)曲线中提取时域特征,并利用S变换提取频域特征,同时引入了电池间不一致性指标。为评估所提取特征的鲁棒性,本文采用实验室数据进行了验证。此外,通过针对不同容量和正极材料电池的实验,分析了温度对电池容量及所提取特征...
解读: 该研究提出的电池SOH估计方法对阳光电源储能系统(PowerTitan/ST系列PCS)及充电桩产品具有重要价值。通过增量容量曲线和S变换的多域特征提取,结合GRU-LightGBM融合模型,可显著提升BMS电池健康状态评估精度(MAPE<1.99%)。该技术框架可集成至iSolarCloud平台,...
基于深度强化学习的氢燃料电池列车能量与热管理协同优化策略
Collaborative optimization strategy of hydrogen fuel cell train energy and thermal management system based on deep reinforcement learning
Kangrui Jiang · Zhongbei Tian · Tao Wen · Kejian Song 等6人 · Applied Energy · 2025年1月 · Vol.393
摘要 轨道交通脱碳已成为轨道交通行业未来发展的主要方向。氢燃料电池(HFC)列车因其零碳排放和较低的改造成本,成为具有竞争力的潜在解决方案。然而,由于氢气在储存、运输和利用方面面临的挑战,其成本较高,仍是制约HFC列车商业化的主要因素。温度对HFC的能量转换效率和寿命具有显著影响,其热管理要求比内燃机更为严格。现有的HFC列车能量管理系统(EMS)通常忽略了HFC温度变化对能量转换效率的影响,难以根据环境动态条件实现能量与热管理的实时平衡控制。为解决这一问题,本文提出一种基于深度强化学习(DRL...
解读: 该深度强化学习能量-热管理协同优化技术对阳光电源氢能及储能系统具有重要借鉴价值。其MDP建模与双深度Q学习算法可应用于ST系列PCS的多能源协调控制,实现电池SOC动态平衡与温控优化。该方法在充电站EV Solutions中可优化充电功率分配,降低设备热应力;在PowerTitan储能系统中可提升变...