找到 4 条结果 · Applied Energy

排序:
系统集成 调峰调频 微电网 ★ 5.0

基于解聚合策略的虚拟电厂异构柔性资源优化协同调度

A De-aggregation strategy based optimal co-scheduling of heterogeneous flexible resources in virtual power plant

Zixuan Zheng · Jie Li · Xiaoming Liu · Chunjun Huang 等10人 · Applied Energy · 2025年1月 · Vol.383

摘要 虚拟电厂(VPP)作为一种有效解决方案,可在包含多种类型柔性资源(FRs)的并网型微电网中维持内部功率平衡,并参与外部削峰辅助服务。然而,随着不同类型柔性资源在响应行为上的特征异质性日益显著,以及其在削峰过程中的耦合关系,给VPP调度指令的精确分解带来了挑战。本文提出一种基于离散选择模型和特征匹配方法的解聚合策略,以动态排序柔性资源的响应顺序,同时优化VPP的削峰能力。首先,对异构特征进行精细化建模,以刻画多类型柔性资源满足并网微电网调度需求(SDGM)的响应能力。随后,构建特征差异量化模...

解读: 该VPP解聚优化策略对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。通过异构资源特征建模和动态响应排序,可提升储能系统参与电网调峰辅助服务的精准度。结合iSolarCloud平台的预测性维护能力,能够优化多类型柔性资源协同调度,降低70%调峰偏差。该技术可增强阳光电源微网解决...

储能系统技术 储能系统 DAB 工商业光伏 ★ 5.0

采用储能系统的电压暂降敏感工业用户两阶段商业模式

A two-stage business model for voltage sag sensitive industrial users employing energy storage systems

Hong Liao · Yunzhu Chen · Zixuan Zheng · Xianyong Xiao 等5人 · Applied Energy · 2025年1月 · Vol.379

在电表后端(behind-the-meter, BTM)集成储能系统(ESS)是降低易受电压暂降影响的工业用户用电成本并提升电能质量的可靠方法。然而,目前诸如高昂的初始投资成本、较长的投资回收周期以及服务策略灵活性不足等障碍,正阻碍着BTM储能系统在工业领域的广泛应用。综合能源服务提供商(IESPs)提供的创新性BTM储能解决方案已成为应对上述挑战的可行选择。本研究提出一种新的两阶段商业模式,旨在推进储能系统的部署,同时兼顾综合能源服务提供商与用户双方的需求。本文阐述了该商业模式的框架,以明确各...

解读: 该两阶段商业模式对阳光电源ST系列储能变流器和PowerTitan系统在工商业场景的推广具有重要价值。研究验证了表后侧储能系统通过削峰填谷和电能质量治理可降低用户全生命周期成本2.35%-17.12%,与阳光电源iSolarCloud平台的智能运维能力高度契合。峰谷电价差和电压暂降治理性能是关键影响...

光伏发电技术 强化学习 ★ 5.0

基于鲁棒深度强化学习的考虑输电网电压波动的多馈线配电网分布式电压控制

Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning

Zhi Wu · Yiqi Li · Xiao Zhang · Shu Zheng 等5人 · Applied Energy · 2025年1月 · Vol.379

摘要 在多馈线配电网中,区域间光伏出力与负荷需求的功率平衡问题更加复杂。为解决上述问题,本文提出一种基于鲁棒深度强化学习的多智能体分布式电压控制策略,以降低电压偏差。将整个多馈线配电网划分为主智能体和多个子智能体,建立了一种考虑输电网电压波动及其对应功率波动的多智能体分布式电压控制模型。主智能体基于子智能体上传的信息,将输电网电压波动及相应功率波动的不确定性建模为对系统状态的扰动,并采用鲁棒深度强化学习方法确定有载调压变压器分接头的位置。进一步地,各子智能体利用二阶锥松弛技术调节每条馈线上逆变器...

解读: 该多馈线分布式电压控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。论文提出的主从代理架构可应用于iSolarCloud平台,实现毫秒级电压调节决策。鲁棒深度强化学习方法可增强PowerTitan储能系统应对电网电压波动的能力,二阶锥松弛技术优化逆变器无功输出与阳光电源现有M...

光伏发电技术 深度学习 ★ 5.0

DEST-GNN:一种用于多站点小时内光伏功率预测的双探索时空图神经网络

DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting

Yanru Yang · Yu Liu · Yihang Zhang · Shaolong Shu 等5人 · Applied Energy · 2025年1月 · Vol.378

准确的光伏发电(PV)功率预测对于电网实时平衡和储能系统优化至关重要。然而,由于光伏发电具有间歇性和波动性,实现高精度的光伏功率预测仍然是一项挑战。本文提出了一种用于多站点小时内光伏功率预测的新方法。与当前独立预测每个光伏电站功率的方法不同,我们通过考虑各光伏电站之间固有的时空相关性,同时预测所有站点的发电功率,并设计了一种新型图神经网络模型——DEST-GNN。在DEST-GNN中,采用无向图来表示这些光伏电站之间的依赖关系:每个光伏电站由一个节点表示,任意两个电站之间的时空相关性则由它们之间...

解读: 该多站点小时内光伏功率预测技术对阳光电源SG系列逆变器和ST储能系统具有重要应用价值。DEST-GNN通过时空图神经网络捕捉多电站关联性,可集成至iSolarCloud平台实现区域级功率预测,优化储能系统PowerTitan的充放电策略。其稀疏注意力机制可提升GFM/GFL控制算法的前瞻性调度能力,...