找到 3 条结果 · Applied Energy

排序:
储能系统技术 储能系统 ★ 5.0

锂离子电池建模研究综述与展望:当前研究的深入分析与未来发展方向

A comprehensive review of lithium-ion battery modelling research and prospects: in-depth analysis of current research and future directions

Bowen Zheng · Zhichao Dengd · Zhenhao Luo · Shuoyuan Mao 等14人 · Applied Energy · 2025年1月 · Vol.401

摘要 随着全球能源转型与低碳技术的快速发展,锂离子电池作为核心储能单元,其性能提升与安全管理高度依赖于精确的电池建模。电池建模经历了从机理驱动到数据驱动、从单尺度到多尺度融合的发展过程,形成了三大主流技术体系:其一,基于Thevenin框架的等效电路模型(ECM),利用RC网络拟合电池外部特性,通过引入迟滞模块并结合遗传算法优化,可在电池管理系统(BMS)实时控制中实现毫秒级响应,展现出显著的工程应用优势;然而,其建模逻辑局限于端口特性,缺乏对深层物理机制的解释能力。其二,基于多孔电极理论和偏微...

解读: 该锂电池建模综述对阳光电源储能系统具有重要指导意义。等效电路模型可直接应用于ST系列PCS的BMS实时控制,实现毫秒级SOC估算;物理场模型支撑PowerTitan电池包热管理优化和材料选型;数据驱动模型可融入iSolarCloud平台,提升储能电站全生命周期预测性维护能力。多尺度混合建模思路为阳光...

储能系统技术 SiC器件 可靠性分析 深度学习 ★ 5.0

基于物理信息神经网络的锂离子电池健康状态、剩余使用寿命与短期退化路径联合估计

Physics-informed neural network for co-estimation of state of health, remaining useful life, and short-term degradation path in Lithium-ion batteries

Li Yanga · Mingjian Heab · Yatao Ren · Baohai Gao 等5人 · Applied Energy · 2025年1月 · Vol.398

摘要 锂离子电池由于各种内部和外部因素会随时间逐渐退化,这种退化带来了显著的安全性和可靠性风险,凸显了电池健康管理作为关键研究领域的重要性。然而,当前仍面临一个重大挑战,即开发一种通用的健康管理方法,以适应不同的电池材料、工作环境以及多样化的任务需求。为应对这一问题,本文提出了一种新颖的多任务健康管理方法,该方法将多任务处理框架与物理信息神经网络相结合。通过共享参数与任务特定参数的协同设计,并结合基于物理规律的特征提取机制,该方法高效地整合了健康状态估计、剩余使用寿命预测以及短期退化路径预测三项...

解读: 该物理信息神经网络多任务学习框架对阳光电源储能系统具有重要应用价值。可直接集成至ST系列PCS和PowerTitan储能系统的BMS中,实现SOH估算(误差0.75%)、RUL预测(误差104循环)和短期退化路径预测的协同管理。其基于恒压充电阶段电压电流数据的特征提取方法,与阳光电源iSolarCl...

储能系统技术 电池管理系统BMS ★ 5.0

一种基于多时间分辨率注意力机制的交互网络用于多种电池状态联合估计

A multi-time-resolution attention-based interaction network for co-estimation of multiple battery states

Ruixue Liu · Benben Jiang · Applied Energy · 2025年1月 · Vol.381

摘要 高效且可靠的电池管理系统依赖于对多个电池状态的精确联合估计,包括荷电状态(SOC)、健康状态(SOH)和剩余使用寿命(RUL)。然而,由于这些状态在不同时间尺度上具有不同的时间分辨率以及复杂的相互作用,特别是在缺乏历史电池数据的情况下,该任务面临显著挑战。为应对这些挑战,本文提出了一种新颖的端到端多时间分辨率注意力机制交互网络(MuRAIN),用于多种电池状态的联合估计,该方法直接利用当前的充放电循环数据,无需历史数据。MuRAIN方法引入了一个多分辨率分块模块,能够从循环数据中智能提取具...

解读: 该多时间分辨率注意力交互网络技术对阳光电源ST系列储能变流器及PowerTitan储能系统的BMS优化具有重要价值。MuRAIN可实现SOC、SOH、RUL的高精度联合估计,无需历史数据即可基于当前循环数据运行,特别适合浅循环工况下的商业储能应用。该技术可集成至iSolarCloud平台,提升预测性...