← 返回
储能系统技术 储能系统 ★ 5.0

锂离子电池建模研究综述与展望:当前研究的深入分析与未来发展方向

A comprehensive review of lithium-ion battery modelling research and prospects: in-depth analysis of current research and future directions

作者 Bowen Zheng · Zhichao Dengd · Zhenhao Luo · Shuoyuan Mao · Minggao Ouyang · Xuebing Han · Hewu Wang · Yalun Lic · Yukun Sunde · Depeng Wangd · Yuebo Yuand · Liangxi Heab · Zhi Yangd · Yanlin Zhude
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Review compares lithium battery circuit physical field and data-driven models with key characteristics.
语言:

中文摘要

摘要 随着全球能源转型与低碳技术的快速发展,锂离子电池作为核心储能单元,其性能提升与安全管理高度依赖于精确的电池建模。电池建模经历了从机理驱动到数据驱动、从单尺度到多尺度融合的发展过程,形成了三大主流技术体系:其一,基于Thevenin框架的等效电路模型(ECM),利用RC网络拟合电池外部特性,通过引入迟滞模块并结合遗传算法优化,可在电池管理系统(BMS)实时控制中实现毫秒级响应,展现出显著的工程应用优势;然而,其建模逻辑局限于端口特性,缺乏对深层物理机制的解释能力。其二,基于多孔电极理论和偏微分方程的物理场模型,能够精确描述锂离子传输过程与电化学动力学行为,支持新型电池材料的研发;但尽管具备机理上的高精度性,其计算复杂度较高,限制了快速计算的应用。其三,数据驱动模型借助数据驱动方法在SOC/RUL预测等非线性任务中表现出强泛化能力,混合架构通过多模态融合提升了跨场景预测精度,但存在可解释性弱、小样本适应性差的问题。本文系统比较了这三类模型在建模原理、计算成本、预测精度及典型应用场景方面的特性,分析了等效电路模型的工程适配优势、物理场模型的机理深度以及黑箱模型的数据驱动潜力。同时,本文也指出了传统模型在新型电池系统适应性、多场耦合建模复杂性以及边缘计算设备部署等方面所面临的共性挑战。未来研究将聚焦于多尺度混合建模与数据驱动融合,并结合当前大模型的应用趋势,为电池研发、系统设计及全生命周期管理提供理论支撑与技术路径。

English Abstract

Abstract With the rapid development of global energy transition and low-carbon technologies, lithium-ion battery, as the core energy storage unit, is highly dependent on accurate battery modelling for its performance enhancement and safety management. Battery modelling has gone through a development process from mechanism-driven to data-driven, and from single-scale to multi-scale fusion, forming three main technology systems: Firstly, the equivalent circuit model (ECM), based on the Thevenin framework, uses RC networks to fit battery external characteristics. With hysteresis module embedding and genetic algorithm optimization, it enables millisecond-level responses in BMS real-time control, showing engineering application advantages. However, its modelling logic is limited to port characteristics, lacking deep physical mechanism explanation. Secondly, the physical field model, based on porous electrode theory and partial differential equations, accurately describes lithium-ion transport and electrochemical kinetics, supporting new battery material research and development. Yet, its high computational complexity hinders fast calculation despite mechanistic precision. Lastly, data-driven models leverage data-driven approaches for strong generalization in nonlinear tasks like SOC/RUL prediction. Hybrid architectures improve cross-scenario accuracy via multimodal fusion but suffer from weak interpretability and poor small-sample adaptability. This paper systematically compares the modelling principles, computational costs, prediction accuracies, and typical applications of these three types of models, and analyses the engineering adaptation advantages of the equivalent circuit model, the mechanistic depth of the physical field model, and the data-driven potential of the black box model. Meanwhile, this paper also points out the common challenges faced by traditional models in terms of novel battery system adaptability, multi-field coupling modelling complexity, and deployment of edge computing devices. The research outlook will focus on multi-scale hybrid modelling and data-driven fusion, combined with current large model applications, to provide theoretical support and technical paths for battery R&D, system design and full life cycle management.
S

SunView 深度解读

该锂电池建模综述对阳光电源储能系统具有重要指导意义。等效电路模型可直接应用于ST系列PCS的BMS实时控制,实现毫秒级SOC估算;物理场模型支撑PowerTitan电池包热管理优化和材料选型;数据驱动模型可融入iSolarCloud平台,提升储能电站全生命周期预测性维护能力。多尺度混合建模思路为阳光电源开发高精度电池管理算法、优化PCS控制策略、实现边缘计算部署提供理论支撑,助力储能系统安全性与经济性提升。